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The genetic analysis of complex traits is being transformed by the generation and 

analysis of genome-wide genetic marker data. These new data sets open up excit­

ing new possibilities as well as pose new challenges. But these data sets are not a 

panacea for elucidating the genetics of complex traits and therefore there is still a 

need to refine and improve traditional methods of analysis. I start by addressing 

one of the major challenges posed by the generation of genome-wide marker data, 

how to efficiently and correctly manage the data. These large datasets need to be 

stringently managed to minimize the introduction of error and bias, as well as in­

tegrate them with phenotype data for analysis. I present a web-based, relational 
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database driven data management tool that allows researchers to easily manage 

and analyze their genetic data and integrate it with phenotype information. Due 

to the complex inheritance pattern of these traits, nonparametric linkage (NPL) 

analysis is still a good technique to study pedigrees to identify regions of the 

genome involved in these traits. The analysis of quantitative traits is very pow­

erful and we present a new method that allows for researchers to perform NPL 

analysis using quantitative traits. Additionally, we show that using the Kong & 

Cox method as a general framework we can combine the exact NPL analysis of 

small pedigrees with estimation NPL techniques on large pedigrees to efficiently 

and correctly perform a single significance test. Finally, we investigate one of 

the exciting new possibilities that the new genome-wide genotyping technologies 

have opened. We develop three new algorithms that allow researchers to form 

and analyze pedigrees constructed only from genome-wide genotypes without any 

a priori information of genetic relatedness. 
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Chapter 1 

Introduction 

The investigation into the genetic components of human disease has been trans­

formed over the past 7 years. From the publication of the first draft sequence of 

the human genome in 2001 (The International Human Genome Sequencing Con­

sortium et ai, 2001; Venter et ai, 2001), to the development of high-throughput 

whole genome genotyping technologies (Matsuzaki et ai, 2004), to today when 

researchers are using new massively parallel sequencing technologies to sequence 

thousands of human genomes (http://www.1000genomes.org/) the study of hu­

man disease is being transformed into a data-driven, information science. These 

huge technological advances that produce such vast and in depth surveys of the 

variation in the genome makes computational genetics an exciting and rapidly 

changing field. The data is driving researchers to develop new computational 

tools that can handle and analyze the data. 

The analysis of clean data that is free of error and bias is essential if the avail­

able statistical methods are to find the genetic signal. Genotyping technology 

has very rapidly developed over the past ten years and now allows researchers 
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to assay hundreds of thousands of single nucleotide polymorphisms (SNPs) in 

thousands of samples very rapidly. Ensuring that this volume of data is strin­

gently managed and free of error is an important task, and is daunting for some 

researchers. During the era of microsatellite based genome scans most researchers 

were managing all of their data in unlinked spreadsheets or other flat files. Even 

with that amount of data ensuring error free transmission of data from the lab 

to the analysis programs was difficult. Using flat files to manage and analyze the 

data generated from the new genome-wide SNP technologies is inefficient and 

impractical. Chapter 2 2 discusses the development of an application that har­

nesses the power and robustness of relational database management systems for 

the management of large scale genetic studies. This new data management tool 

allows users to easily manage and integrate their large scale genotype data with 

their phenotype data, and perform complex exploratory searches of the data. 

The developed application has a simple web-based user interface that allows easy 

collaboration between researchers spread across multiple labs or institutions. 

The common, complex genetic traits that are currently the focus of genet­

ics research have complex inheritance patterns, making them hard to model and 

therefore not good candidates for traditional parametric linkage analysis. The 

nonparametric linkage (NPL) analysis based on the amount of alleles shared 

among affected relatives is an attractive alternative. The traditional NPL method 

is for the analysis of qualitative traits, but quantitative traits hold more infor­

mation and give more power to detect linkage. In Chapter 3 3 we develop a new 

test statistic that allows researchers to perform NPL analysis using quantitative 

traits. We develop the mathematical theory behind the method and demonstrate 

its ability to identify genetic signals in both simulated and real data. The most 
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efficient and robust method of determining the statistical significance of the tra­

ditional NPL method is also investigated in this chapter. We demonstrate that 

there is now a framework to efficiently combine exact analysis of small pedigrees 

and estimation techniques used on large pedigrees for both quantitative and qual­

itative NPL analysis into a single significance test, thus improving computational 

efficiency and power. 

The genome-wide SNP genotyping technologies that are posing challenges in 

managing data are also opening new and exciting ways to analyze data. In Chap­

ter 4 4 we develop three new algorithms that utilize genome-wide SNP genotypes 

to determine the genetic relatedness between random pairs of individual without 

any a prior knowledge. The first algorithm is a methods-of-moments estimator 

that determines the relatedness between individuals in a global sense. The second 

algorithm is a penalized optimization technique that determines the relatedness 

between individuals on a locus by locus basis for every SNP assayed. The third 

algorithm uses the first algorithm with a standard algorithm from graph theory 

to cluster individuals into pedigrees. The chapter develops the theory and mathe­

matics of the algorithms and illustrates their success through extensive simulation 

studies. 
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Chapter 2 

The Generic Genetic Studies 
Database: Web-based Data 
Management for Large Scale 
Human Genetic Studies 

2.1 Introduction 

Recent advancements in genotyping technology are fundamentally changing the 

way the genetic basis of complex diseases are investigated. The new technologies 

allow researchers to investigate hundreds of thousands of single nucleotide poly­

morphisms (SNPs) across the entire genome simultaneously. These technologies 

enable researchers to conduct genome-wide association (GWA) and other genome-

wide studies that, until these technological advances, had only been hypothesized 

as ways to map the genetics of complex disease (Risch and Merikangas, 1996). 

The National Cancer Institute (NCI)-National Human Genome Research Insti­

tute (NHGRI) catalog of published GWA studies demonstrates the tremendous 

growth and success of these studies (http://www.genome.gov/26525384). Despite 

significant progress, the impact of these discoveries has been limited because the 
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identified variants only explain a fraction of the observed familial aggregation of 

the diseases studied (Altshuler and Daly, 2007). 

Identification of loci with such modest effects requires sample sizes in the 

thousands (McCarthy et al, 2008). Genotyping samples this large with the new 

technology generates data orders of magnitude greater than the microsatellite 

based whole-genome mapping studies of just a few years ago (Pajukanta et al., 

2003). Further complicating data management and analysis is the fact that GWA 

and other genome-wide SNP based studies are commonly highly collaborative 

with researchers spread across multiple labs and institutions. This highly collab­

orative setting makes storing data in flat files that need to be edited and shared 

impractical, inefficient, and adds an avenue to introduce error. The first wave 

of successful GWA studies has shown that the data needs to be accurately and 

precisely managed in order to eliminate error and bias, and that this has proven 

challenging in this collaborative environment (McCarthy et al., 2008). 

The establishment of a data management system is an expensive and time-

consuming endeavor with a major component of the cost and time involving the 

development of the database schema and user interface. GWA and other large-

scale genetic studies have a common set of data types and tasks that need man­

aging, opening the possibility of a generalized solution. The Generic Model Or­

ganism Database (GMOD) project recognized that sequencing projects all share 

a common set of data types and tasks and have developed generalized data man­

agement tools that are provided to their research community free of charge un­

der open source licenses (http://www.gmod.org)(Stein et al., 2002; Lewis et al., 

2002). The genetics research community would benefit from a similar develop­

ment project that produces a free data management tool that allows researchers 
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to easily manage the massive datasets generated by the new technology and eas­

ily share and analyze the data. The Generic Genetic Studies Database (GGSD) 

project has developed a relational database schema and suite of web-based man­

agement tools that handles the data types and performs the tasks needed to 

conduct genome-wide genetic studies, and is released free under an open source 

license (Day, 2007). 

GGSD stores, organizes and links all the pedigree/individual, genomic, phe-

notypic and disease status information used in gene mapping studies. GGSD is 

not intended to be a laboratory information management system (LIMS) and 

therefore was not designed to manage or track information such as the plate and 

well location of DNA samples. LIMSs are very specific applications intended 

to manage laboratory work flow and improve the quality of data generated by 

the laboratory, and although extremely important to genetic studies was not the 

focus of GGSD's development. Additionally, genotyping using the new genome-

wide SNP technologies is generally performed in core laboratories or as a service 

from the technology developer making LIMS a truly separate system. The central 

design principle behind GGSD is to facilitate the analysis of the data it stores. 

Therefore, GGSD is intended to be a central repository of data that allows re­

searchers to easily insert, manage, search, edit, and download data. The system is 

suitable for any research group that must manage the above types of information 

and wants a single, fully integrated data management solution. 
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2.2 User Interface and Tools 

GGSD provides a simple, web-based interface that is easy to navigate. The 

entry point to the system is the homepage pictured in Figure 2.1. The right 

frame of the homepage is configurable, allowing each group to customize the 

look and content of their installation. The tools of the system are all accessible 

from the scrollable tool bar along the left frame of the homepage. The tools 

monitor the size of requested data to be imported or downloaded, and if the size 

exceeds a configurable threshold the tool executes in the background. When the 

tool finishes the user receives an email with the results. Due to the sensitive 

nature of the data being managed all tools are password protected and all data 

transmissions are encrypted by requiring connection via https. Researchers can 

create and manage multiple projects with a single installation, as well as assign 

different access levels to users on a project-by-project basis. 

2.2.1 Data Importing, Editing and Deleting 

Importing data is performed by either uploading formatted files or entering data 

through simple web forms. GGSD has defined simple comma-separated file for­

mats to import individual, gene, marker, map, phenotype and genotype data. 

In addition to the GGSD defined file formats for marker and genotype data, 

GGSD handles files generated by some of the SNP-chip manufacturers including 

Affymetrix (annotation and genotype call files) and Illumina (Manifest, OPA, 

and genotype call files). GGSD also allows users to edit data once it has been in­

serted. The data is edited through web forms, and only allows the user to update 

fields that do not alter or break the referential integrity of the data. Deleting 
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Figure 2.1: GGSD Configurable Home Page 
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data is just as simple as inserting data, and is performed by either uploading 

formatted files or entering data via web forms. Users are alerted when data is 

inserted, edited, or deleted through automatically generated emails that inform 

them of the type and amount of data that was altered. This ensures that all 

users are analyzing the most up to date data. Additionally, the system logs the 

user and time of any insertion, deletion or editing of data. 

2.2.2 Searching and Downloading Data 

GGSD facilitates user exploration and analysis of data by allowing complex, 

multi-field querying. The search tools are separated into seven data type specific 

search tools: pedigree search, individual search, gene search, marker search, map 

search, genotype search and phenotype search. The search tools allow users to 

select any table in the database schema and any number of fields in that table to 

search for the specific data type, as seen in Figure 2.2 for searching the genotype 

table. The tools provide the user with all the power and complexity of searching 

the relational database using the structured query language (SQL) without having 

to know any of its syntax. The user is provided a table of results that match their 

query and allows them to select which elements they want to download data for. 

All the tools allow the user to download records as they appear in the database, 

as well as giving the user a path to download data in analysis ready formats. 

Given that the central design principle behind GGSD is to facilitate the anal­

ysis of data, the users are given the ability to generate data files for a number 

of analysis packages. The default download format is the pre-Makeped format 

which is accepted by programs such as Haploview (Barrett et al, 2005). GGSD 

has integrated support for the Mega2 software and allows users to select, gen-
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Figure 2.2: GGSD Example Search Definition Page 
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Figure 2.3: GGSD download file format selection screen 

erate and download the files Mega2 generates for 27 different analysis options 

(Mukhopadhyay et al, 2005). GGSD also generates non-binary formatted files 

for the PLINK software (Purcell et al, 2007). Figure 2.3 shows the form allowing 

users to select which program the downloaded data should be formatted for. Ad­

ditionally, the Cranefoot pedigree drawing software has been integrated allowing 

users to select, draw and download pedigree structures (Makinen et al., 2005). 
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2.2.3 Incorporation of Quality Control Analysis 

Researchers involved in the analysis of the first wave of GWA studies have em­

phasized the importance of stringent quality control measures to eliminate the 

introduction of error and bias (McCarthy et al., 2008). GGSD allows researchers 

two main ways to incorporate quality control information into the system, the 

flagging of data that is not worthy of analysis and the creation of groups of 

individuals that have been cleared for analysis. 

GGSD provides utilities to flag specific data types as not passing quality 

control procedures. The system allows markers, genotypes and phenotype values 

to be flagged in the database. The flagging of a marker does not remove it from 

the database or alter its information. What nagging a marker means is if it 

is selected for analysis the genotypes for all individuals will be downloaded as 

missing genotypes, effectively removing it from analysis. Users can either select 

markers to flag through the web interface or upload a file of marker names. A 

standard quality control procedure is testing markers for violation of Hardy-

Weinberg equilibrium (HWE). GGSD has a built-in utility to perform the Chi-

squared goodness-of-fit HWE test for microsatellites and the exact HWE test 

for SNPs as implemented in the program PEDSTATS (Wigginton and Abecasis, 

2005; Wigginton et al., 2005). The first large GWA studies have shown that there 

is not a specific p-value threshold that can be employed for identifying markers 

that satisfy verses violate HWE, rather the p-value cutoff should be determined 

on a study by study basis (McCarthy et al., 2008). Therefore GGSD allows users 

to set the p-value threshold that separates markers that satisfy verses violate 

HWE. Users are given a file detailing the markers that violate HWE based upon 
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the user define p-value threshold. Markers that violated HWE in this analysis 

are flagged in the database. Individual genotypes and phenotype values can 

also be flagged, which results in them being downloaded as missing genotypes or 

phenotypes for analysis purposes. The users can either select the genotypes or 

phenotype values through the web interface or upload a file of the values to be 

flagged. Important is the fact that none of the data stored in the database is 

altered when it is flagged, only the values printed out for analysis purposes are 

altered. This allows the researchers to go back and unflag the data at a later 

time if upon further analysis they believe the data to be suitable for analysis. 

Users can define groups of individuals or pedigrees, and then link the individ­

uals that satisfy the defined group's criteria by uploading a file of the individuals 

or selecting them through the web interface. The users can then filter all their 

searches using defined groups to restrict the individuals included in analyses. 

Another potential source of error is the misclassification of which individuals are 

affected for traits. GGSD has a utility that automates the calling of affected indi­

viduals based on the stored phenotype information for each individual, removing 

the potential error introduced when researchers enter data by hand. The user 

selects the trait they want to assign affection status for, the phenotype to base 

the assignment on, enters the test criteria and comparison method, and GGSD 

investigates all individuals in the database and assigns an affection status. 
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2.3 GGSD Internals 

2.3.1 Data Types & Database Design 

The heart of GGSD is the relational database schema that defines the entities that 

are tracked, the data stored for each entity, and how all the entities relate to each 

other. GGSD has defined 16 primary entities seen GGSD's entity-relationship 

model in Figure 2.4. These 16 entities are translated into the 16 primary tables 

of the relational database schema. The defined entities are classified into three 

distinct types of information: individual, genomic, and phenotypic. The database 

information is conceptually separated into three information spaces. The first 

information space being that of the project. A project is comprised of a distinct 

set of individual, genomic, and phenotypic data that is linked. Data is not shared 

between projects. The second information space is the space of users. A user is 

an entity that has an application managed user ID, password and email address. 

A user has links to projects and is assigned access rights (e.g. read access only) 

on a project-by-project basis. The third information space is the actual data that 

is stored in the database for a project. 

The individual information is the central information in the schema because 

they are the entities that are analyzed in genetic research. The individual in­

formation is divided into 4 tables: pedigree table, pedigree group table, individ­

ual table and individual group table. A pedigree is a collection of individuals 

connected by genetic relationships, and the pedigree table stores the number of 

individuals in a pedigree and their nationality. An individual is a person that 

belongs to a pedigree and has a mother, father and sex. Individuals can also have 

genotypes for markers, phenotype values for phenotypes, and an affection status 
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for a disease state. Pedigree and Individual groups are collections of pedigrees or 

individuals that can be collected together based on non-genetic information (e.g. 

cases and controls). 

The second type of data that GGSD stores is genomic information. The top 

level abstraction of genomic information is a gene. The gene table stores the 

name, unigene accession number, chromosome, start and stop base pair posi­

tions, the number of introns and exons, and a description for a gene. The next 

level of information is the marker. A marker is a genome sequence element that 

is polymorphic in the population. GGSD is capable of storing data on both 

microsatellite and SNP markers. The marker table stores information on the 

marker name, type, the number of alleles it has, whether it belongs to a gene in 

the database, the chromosome it is on, its chromosome base pair position, the 

genomic strand, genomic position (e.g. intron, exon, 5'UTR,3'UTR, intergenic), 

the genome build and dbSNP version it is from, if it is a tag SNP, and whether 

it codes for a synonymous or nonsynonymous amino acid substitution. An allele 

is one of the polymorphic forms of a marker, and the database stores the marker 

an allele is for, its size, its sequence, its code, its frequency in the population and 

how the Affymetrix and Illumina technologies code the allele. Genetic markers 

can be combined into genetic maps. A genetic map is an ordered set of markers 

where the distance between markers is known. In GGSD a map has a name, the 

number of markers in the map and how distance is measured between markers 

(e.g. base pairs, Haldane centiMorgans, Kosambi centiMorgans or recombination 

fraction). The markers in a map have a chromosome, its position in the map (e.g. 

first marker) and its distance from the previous marker in the map. The final 

piece of genomic information stored is a genotype. A genotype is composed of the 
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alleles (one maternal and one paternal) an individual has for a genetic marker. 

The information stored for a genotype is the individual it is for, the marker it is 

for, the two alleles that compose the genotype, the platform used for genotyping, 

and any associated genotype score. 

The final type of data is phenotypic information. The phenotypic data is 

stored in 7 tables. The first table is the phenotype table. A phenotype describes a 

physical attribute that can be measured for an individual and the phenotype table 

stores the name, type (e.g. quantitative), and a description detailing what the 

phenotype is measuring. A phenotype value is the measurement of a phenotype on 

a specific individual. GGSD also stores population based phenotypic information. 

For the purpose of classification and measurement individuals in a population 

are often separated into age groups (e.g. 18-20), and GGSD allows researchers 

to store this information. Diseases are often defined based on population sex 

and age-group specific distributions of values for quantitative traits. Therefore, 

GGSD allows researchers to store the population based sex-specific 10i/l and 90</l 

percentiles of a quantitative trait for stored age groups. Finally the database 

allows users to define traits that individuals can an affection status, and stores 

allele information for the traits needed in methods of analysis. 

2.3.2 Software Libraries & Extending the Application 

The user tools of GGSD are driven by three software libraries. The first library 

contains methods for querying the underlying relational database and collecting 

the results. This library insulates the user tools from having to know the details of 

the database schema and provides a well defined programming interface to process 

users' queries and collect the results. The second library contains methods for 

16 



www.manaraa.com

Pedigree Group VM_ _ / D e l o n g \ Pedigree Affection Status 
Allele 

Individual Group ft* <°el™e Individual 

Genotype 

H«> ^ Affection Status 

<S> - _S4 Qualitative 
Phenotype Value 

<s> 

-^ComposcdS—- -MJ 
i _ 

Quantitative 
Phenotype Value 

Marker Age Group 

M a c Gene 

Phenotype 

<Haj>- Age Group-Phenotype 
Percentiles 

: Family and Individual Based I I: Genomic Based 
Information Information 

: Phenotypic Based 
Information 

Figure 2.4: GGSD Entity-Relationship Diagram 

generating html to appropriately and nicely display the results of users queries, 

as well as generating the JavaScript that allows the user to interact with and 

validate data. This library insulates the user tools from having to know how 

to format the different data types returned from the SQL library to display to 

the user by providing a well defined programming interface. The third library 

is a set of methods for interacting with and manipulating the file system of the 

web server. The methods in this library are used to monitor files stored in the 

individual users' data directories. When files are older than a configurable file 

expiration parameter the library functions are used to clean up the file system. 

This library ensures that the server's memory storage is not being used by old, 

unnecessary files. 
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The modularity and programming interfaces that these code libraries provide 

make writing new extensions and tools for GGSD straightforward. The developer 

is not constrained by needing an intimate knowledge of the database schema nor 

an understanding of how to correctly format the results into html. The process 

of writing extensions becomes a process of understanding what the new tool is to 

accomplish and calling the appropriate library functions to achieve that goal. Of 

course, developers are also able to add new methods to the libraries extending the 

underlying capabilities of what a GGSD user tool can accomplish. GGSD was 

designed from the bottom up to be extendable, modular and portable. That is 

why GGSD relies on no proprietary software, but only uses software components 

that are freely available under open source licenses. 

2.3.3 GGSD Implementation, Requirements and Support 

GGSD server side applications are written in PHP, with database connectivity 

using the PEAR MDB2 module. The client side form interaction and validation 

is written in JavaScript. The exact HWE test for SNPs is written in C (provided 

by the authors of PEDSTATS), and the chi-squared HWE test for microsatellites 

was written in Perl using the Math::CDF module. GGSD has been tested on 

and supports the use of both the MySQL and PostgreSQL relational database 

management systems. GGSD requires the server to have Mega2 installed for its 

Mega2 capabilities to function, and was developed against Mega2 version 4.0 Rl. 

GGSD's Cranefoot capabilities require the user to install an executable copy of 

Cranefoot, and was developed against Cranefoot version 3.2.2. The GGSD appli­

cation is hosted on SourceForge (http://sourceforge.net/projects/ggsd/), which 

provides a user interface for user support, feature requests, and reporting bugs. 
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2.4 Discussion 

I have described a new web-based, relational database driven tool for the man­

agement of the individual, genomic and phenotypic information that researchers 

use in the analysis of complex traits. The need for such systems has been rec­

ognized and developed for over 20 years (Seuchter and Skolnich, 1988; Cheung 

et ai, 1996). But continuing technological advancements in genetic data genera­

tion and the types of data generated have required continual development of new 

data management schema and tools. There were a number of systems developed 

to handle the microsatellite based genome-wide scans that were prevalent just a 

few years ago (Li et ai, 2001; Gillanders et ai, 2004). But due to the specific de­

sign choices and the fact that they were designed to specific group's requests, they 

are not suitable for the genome-wide SNP based investigations of today. GGSD 

was designed from the beginning to manage the tremendous amount of data gen­

erated by today's high-throughput, genome-wide SNP genotyping technologies 

while allowing the integration of older microsatellite based data. 

GGSD is not the first data management tool developed for high-throughput, 

genome-wide SNP data (Zhao et ai, 2005; Fiddy et ai, 2005). But it has sev­

eral features and design principles that set it apart. A fundamental difference 

that sets GGSD apart from previously developed applications is that it was de­

signed to be a general use application, and it was not designed around a specific 

groups work flow and analysis pipeline. GGSD focused on the components of 

gene mapping investigations that are shared and built a system that fulfills those 

needs. A consequence of this generalized approach, and based on today's ser­

vice based genotyping model, is the dissection of LIMS related attributes and 
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functions out of the application. This separation of LIMS functions is fundamen­

tally different from previous data management tools (Li et al, 2001; Gillanders 

et al, 2004; Zhao et al, 2005; Fiddy et al, 2005). Additionally, GGSD was de­

signed from the beginning to fully integrate phenotype data with genotype data 

into a single application and database schema, which sets it apart from groups 

that developed separate applications to manage genotypes and phenotypes (Zhao 

et al, 2005; Li et al, 2005). Central to the development of GGSD is the be­

lief that the software should be free and released under an open source license. 

Therefore, GGSD does not rely on any proprietary software that requires groups 

to purchase licenses for software, unlike previously developed academic systems 

and the commercially available BCjGene (http://www.bcplatforms.com/) and 

Progeny Lab(www.progenygenetics.com/) applications (Fiddy et al, 2005). The 

open source framework that GGSD is built on makes the system economical and 

allows the system to grow and be modified by the genetics research community 

as the field continues to evolve. 
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Chapter 3 

Unifying Nonparametric Linkage 
Analysis of Large and Small 
Pedigrees in a Kong & Cox 
Framework 

3.1 Introduction 

Linkage analysis still remains a powerful tool in mapping loci involved in complex 

traits (e.g. diabetes, obesity, etc). Despite the tremendous successes of genome-

wide association studies to identify new loci, the majority of the heritability of the 

traits investigated remains unexplained (Altshuler and Daly, 2007). Due to the 

complex inheritance of these traits, linkage analysis based on allele sharing among 

affected relatives is an attractive method. Whittemore and Halpern proposed 

a class of these statistics that don't require the specification of an inheritance 

model, and the method based upon their ideas has become known as the non-

parametric linkage (NPL) method (Whittemore and Halpern, 1994b,a; Kruglyak 

et al., 1996). 

Traditional NPL analysis is based upon the analysis of a dichotomous, qualita-
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tive trait. The fundamental idea is to calculate the number of alleles two affected 

relatives share identical by descent (IBD) and compare that to the expected pro­

portion of IBD sharing based solely on their relationship. If two affected relatives 

share more alleles IBD than expected at a locus than that is suggestive of linkage. 

There are two major parts to this method, the scoring of IBD and the determi­

nation of statistical significance. The IBD scoring can be determined exactly on 

small and medium sized pedigrees. For large, complex pedigrees the problem is 

too computationally difficult to solve exactly so estimation techniques must be 

employed. The method of significance testing for both the exact and estimation 

implementations are the same and is called perfect data approximation (Kruglyak 

et al., 1996). The perfect data approximation technique forms a distribution of 

IBD scores from analyzing a set of simulated pedigrees with 'complete' informa­

tion. Complete information means that the pedigrees contain not only no missing 

genotypes, but also no missing or ambiguous phase information. It is known that 

using this method for significance testing is a conservative approach, especially 

when the data is missing genotype information. The perfect data approximation 

method was developed in the context of exact analysis, and is probably not the 

optimal method for significance testing for the estimation techniques that ana­

lyze large pedigrees. But we are not aware of any rigorous analysis of at what 

degree of missing data causes the perfect data approximation method to yield 

such conservative answers that true linkage signals are often missed by the exact 

analysis programs. Additionally, there is no analysis of how missing genotypes 

affect the estimation techniques of NPL analysis and their significance testing, 

which is the analysis paradigm in the program Simwalk2 (Sobel and Lange, 1996). 

Therefore we have performed an extensive analysis of the affects of missing data 
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of the significance testing in both exact and estimation NPL analysis. 

In addition to the traditional NPL method, Kong and Cox (from this point 

on referred to as K&C) proposed a 1-parameter extension to the method (Kong 

and Cox, 1997). The K&C extension uses the IBD scores from the traditional 

method and they stated that their extension calculates an exact log likelihood 

given any missing data pattern, and therefore would be a more robust method 

than the traditional method. A more robust method would greatly benefit the 

estimation technique of NPL analysis, like the analysis Simwalk2 performs. But 

the K&C extension was developed for the exact NPL method and the calculation 

uses an parameter that can be calculated exactly for small pedigrees but not 

for large pedigrees. We propose that we can appropriately estimate the needed 

parameter and implement the K&C method in Simwalk2, thereby improving its 

performance in the presence of missing data. 

The original NPL method was based upon analyzing qualitative traits, but 

quantitative traits contain more information and provide more power to find 

linked loci. We propose a new test statistic that allows researchers to perform 

NPL analysis with quantitative traits, or Q-NPL analysis. Our new statistic is 

motivated by variance component models, but does not perform parameter es­

timation making the method computationally efficient. We show that our new 

Q-NPL method works well both in exact and estimation NPL analysis and iden­

tifies linkage to traits with a range of heritabilities. 

Additionally, we see the K&C extension as a framework to unify exact NPL 

analysis on small pedigrees and stochastic analysis on large, complex pedigrees. 

We believe that this framework is suitable for both the traditional qualitative 

NPL and our new proposed quantitative NPL analysis. Through extensive sim-
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ulation studies we will illustrate the weaknesses of perfect data approximation, 

the robustness of the K&C method against missing data, the favorable proper­

ties of our new quantitative NPL (Q-NPL) statistic and the ability of the K&C 

framework to unify exact and stochastic NPL analyses. 

3.2 Qualitative NPL Materials and Methods 

3.2.1 Pedigree Configurations 

Three pedigree configurations were analyzed that have previously been used in an 

analysis of IBD computation (Sobel et al, 2001). Pedigree configuration 1 seen 

in Figure 3.1a is a nuclear family with 5 total individuals, pedigree configuration 

2 seen in Figure 3.1b is a 3 generation pedigree with 15 individuals and pedigree 

configuration 3 seen in Figure 3.1c is a 45 individual extended pedigree with 4 

generations. These pedigrees correspond to pedigree configurations B, D, and 

A respectively in the previous analysis (Sobel et al, 2001). Pedigree structure C 

from the previous analysis (Sobel et al., 2001) was also analyzed but its results 

were similar to pedigree configuration 2 and therefore excluded from discussion. 

In addition, we studied a data set composed of a mixture of the above pedigree 

structures. The analysis of pedigree configuration 1 used 51 pedigrees with each 

pedigree containing either 2 or 3 affecteds; the analysis of pedigree configuration 

2 used 14 pedigrees with each pedigree containing 2, 3, or 4 affected individuals; 

and the analysis of pedigree configuration 3 used 17 pedigrees with each pedigree 

containing between 2 and 10 affecteds. The mixture data set was composed 

of 30 pedigrees of configuration C from (Sobel et al, 2001), 10 pedigrees of 

configuration 1, 7 pedigrees of configuration 2, 2 inbred pedigrees of configuration 
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E from the previous analysis (Sobel et al., 2001), and 1 pedigree of configuration 

3. 

3.2.2 Data Simulation 

We simulated a 9-marker microsatellite map with 10 cM between markers, as 

would be seen in a genome-wide scan. The allele frequencies used for these 9 

markers are the allele frequencies from 9 microsatellites on chromosome 16 used 

in a previous gene mapping study (Pajukanta et al, 2003). The genetic map has 

Markerl (Ml) at 0 cM and Marker9 (M9) at 80 cM (Table 3.1). We simulated 

a disease locus located half way between M4 and M5 at 35 cM. The locus at 

35 cM has two alleles, a major allele with frequency 0.8905 and a minor allele 

with frequency 0.1095. We modeled the disease trait as additive with P(affected 

| homozygous for major allele) = 0.01, P(affected | heterozygous) = 0.45, and 

P(affected | homozygous for minor allele) = 0.90. Individuals were assigned an 

affection status based upon their genotype at the putative trait locus, and the 

model specified. The pedigrees initially had no missing genotype information, but 

not necessarily complete phase information. The missing genotype patterns were 

developed based upon looking at the types of missing genotype patterns that were 

present in the 73 families investigated in the previous study (Pajukanta et al., 

2003). The study samples for each investigation were generated by randomly 

choosing from the 1000 generated pedigrees for pedigrees with 2 or more affected 

individuals. This sampling scheme gave us pedigrees with a variety of familial 

relationships among the affecteds and simulates real study sample conditions. We 

restricted our analyses to those pedigrees in which none of the individuals who 

married into the pedigree were affected. 
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Figure 3.1: Pedigree Configurations Investigated: (a) Pedigree Configuration 1; 
(b) Pedigree Configuration 2 
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Figure 3.1: Pedigree Configurations Investigated: (c) Pedigree Configuration 3 

Real Marker 
D16S518 
D16S 3096 
D16S516 
D16S3040 

D16S507 
D16S505 
D16S3091 
D16S402 
D16S3061 

Simulated Marker 
Markerl 
Marker2 
Marker3 
Marker4 
TRAIT 
Marker 5 
Marker6 
Marker7 
Marker8 
Marker9 

Map Position (cM) 
0 
10 
20 
30 
35 
40 
50 
60 
70 
80 

Number of Alleles 
7 
10 
9 
7 
2 
9 
8 
10 
12 
4 

Table 3.1: Simulated Genetic Map 
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3.2.3 True Null Distribution Construction 

To construct what we are calling the true null distribution of the qualitative 

NPL score we simulated 10,000 unlinked pedigrees for each pedigree in the study 

sample via gene dropping. Each of the 10,000 replicate pedigrees mimicked the 

corresponding pedigree in the study sample in the affection status and missing 

data pattern. The NPL statistic was calculated at each location along the marker 

map for each of the 10,000 pedigrees using Mendel (Lange et al, 2001). The NPL 

statistics were combined at each locus to build the true null distribution for the 

overall study sample. The calculated total NPL score for the study sample was 

tested against this null distribution to determine the number of scores that were 

greater than or equal to the calculated score. The p-value for the significance of 

the allele sharing was that count divided by 10,000. 

3.2.4 K&C Linear Model Implementation 

K&C showed that there is a class of models where the log likelihood of a single 

free parameter can be written based solely upon the traditional score. They stress 

that this log likelihood is the exact log likelihood under any missing data pattern. 

The model is based upon a free parameter that is designated S, and the test is to 

see if the maximum likelihood estimate of 5 is different from the #0 that 5 = 0. 

The test is conducted by calculating a score, 

Zlr = y/2[l(5)-l(0)] (3.1) 

and when the number of pedigrees is large the p-value can be approximated 

by 1 — $(Zjr), where 3> is the cumulative distribution of the standard normal 
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distribution. According to the K&C method, the search space for the 6 parameter 

is bounded above by what they call the b-value. The b-value for each pedigree is 

calculated by the equation 

b = ° (3.2) 

1\V> ~ a) 

where a is the smallest theoretical possible value of the score function for a 

particular pedigree. The b-value that bounds the search space for the 5 value is 

the minimum b-value over all pedigrees in the study sample. 

The K&C linear NPL extension was implemented in both Mendel and Simwalk2 

(Lange et ai, 2001; Sobel and Lange, 1996). The Mendel implementation is the 

same as described in the original K&C paper (Kong and Cox, 1997). Simwalk2 

does not carry out exact calculations; therefore it cannot determine the exact fa-

value as it is specified in equation (3.2). Therefore we estimate the b-value using 

the minimum statistic over all sampled descent graphs visited for each pedigree. 

This minimum b-value is used to bound the search for the K&C 8 value. Using 

the z-scores calculated by Simwalk2 for each pedigree and our estimated b-value 

we carry out the K&C linear model as described in the original paper (Kong and 

Cox, 1997). 

3.2.5 Program Comparisons 

For the qualitative NPL analysis we analyzed results from Genehunter, Mendel, 

Merlin, and Simwalk2 (Abecasis et ai, 2002; Kruglyak et ai, 1996; Lange, 2002; 

Sobel and Lange, 1996). We compared how the programs' results of the NPLau 

and the NPLpairs scoring methods compared to the results determined by us­

ing the true null distributions of the two scores. We consider that a locus has 
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significant evidence for linkage to the trait if the — LOGIQ of the p-value is > 

2. The programs Mendel and Simwalk2 weight the z-scores on a per pedigree 

basis by multiplying them by the square root of the number of affecteds in the 

pedigree, while the programs Genehunter and Merlin perform no such weighting. 

In order to accurately compare the results from the programs, we constructed 

true null distributions for both weighting schemes. Of the programs analyzed, 

Merlin is the only package that implements the K&C linear method as part of 

the standard package. Therefore, only the Merlin implementation is compared 

to the Simwalk2 implementation. 

3.3 Qualitative NPL Simulation Results 

Dichotomizing a trait and analyzing with the traditional qualitative NPL method 

is still a powerful method. Our analysis of the qualitative NPL showed that there 

is not a significant difference in results when using the weighting scheme of Mendel 

and Simwalk as compared to the non-weighted scheme of Genehunter and Mer­

lin (data not shown). Therefore in the results shown and discussed we have only 

showed the weighted true distribution and have not shown the results from Gene­

hunter and Merlin's traditional NPL method because their results were virtually 

identical to Mendel's. For the purpose of brevity we are also only showing and 

discussing the results from the NPLan scoring function since the same trends 

and conclusions were made when analyzing the NPLpairs scoring function. 

Figure 3.2 shows the results for analyzing the nuclear family in Figure 3.1a. 

The missing data patterns were formed by zeroing out all the genotypes for one of 

the parents (20% total missing data), then additionally zeroing out all genotypes 
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Figure 3.2: Pedigree Configuration 1 NPL Results. (A) 0% (B) 20% (C) 30% (D) 
40% Missing Genotypes 

for Marker3 (30%), and finally zeroing out all genotypes for Marker6 (40%). As 

Figure 3.2 shows, this family structure contains a lot of information allowing 

for correct identification of linkage even in the presence of a large quantity of 

missing information. The results also show that Simwalk's estimation technique 

does not perform as well as the exact method, but that our implementation of 
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the K&C method in Simwalk performs as well as the exact K&C implementation 

in Merlin. The results also show that the 'perfect-data approximation' method of 

determining significance becomes increasingly more conservative as the amount 

of missing data increases, as shown by the Mendel curves progressive departure 

from the 'true' distribution curve. 

The results of our analysis for pedigree configuration 2 (Figure 3.1b) are 

shown in Figure 3.3. The missing data patterns were formed by zeroing out 

all the genotypes for both of the grandparents (20%), additionally zeroing all 

genotypes for marker5 except for the married-in individuals 6, 7 and 8 and zeroing 

5 genotypes for markerl spread across all generations of the pedigree (30%), and 

finally zeroing out genotypes for marker3 spread out over all generations (40%). 

The effects of missing information on the NPL method are very evident in this 

pedigree configuration. The traditional NPL methods (Mendel & Simwalk) fail to 

find any significant areas of linkage when the grandparent's genotypes are zeroed, 

even though the 'true' distribution and K&C implementations find significant 

evidence for linkage. Even with 30% missing genotypes, the 'true' distribution 

and the K&C implementations still find significant evidence of linkage. The 

analysis of this pedigree configuration also shows that Simwalk's implementation 

of the K&C method is performing as well as the exact implementation, and is a 

vast improvement over Simwalk's standard analysis. 

Figure 3.4 shows the results for analyzing the data set composed of 17 repli­

cates of pedigree configuration 3 (Figure 3.1c). This figure illustrates the tremen­

dous amount of information in these large pedigrees. This analysis also shows that 

the Simwalk K&C extension is much more robust to missing information than 

Simwalk's standard NPL method. The missing data patterns were constructed 
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Figure 3.4: Pedigree Configuration 3 NPL Results. (A) 0% (B) 20% (C) 30% (D) 
40% Missing Genotypes 

by zeroing out all the genotypes for 9 individuals at the top of the configura­

tion (20%), additionally zeroing a large fraction of genotypes for marker5 and a 

small fraction of marker 1 genotypes (30%), and finally zeroing out more entire 

individuals at the top of the pedigree (40%). In fact, the Simwalk K&C method 

shows very little difference in results when analyzing the data set with 20%, 30% 
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and 40% missing genotypes (Figure 3.4 B, C, D). While Simwalk's standard NPL 

method finds it increasingly more difficult to find the linkage signal with the 

increasing amounts of missing data. 

The final data set analyzed was the mixture configuration described above. 

The results of analyzing this mixed dataset can be seen in Figure 3.5. Due to 
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the limitations in the exact analysis package Mendel, the 'true' distribution was 

constructed without analyzing the three large, complex pedigrees in the data set. 

The results from Figure 3.5 illustrate once again that the K&C method, either 

exact or Simwalk's, outperforms the traditional NPL method in finding evidence 

of linkage in the presence of missing data. This analysis also shows the same 

trend that Simwalk's traditional NPL implementation is the most sensitive to 

the effects of missing data, and that implementing K&C into Simwalk is a vast 

improvement and gives comparable results to the exact K&C implementation. 

The results from the analysis of the traditional qualitative NPL method shows 

that the K&C method is a far superior method of significance testing as compared 

to the perfect data approximation. The K&C method is a good framework to 

combine the exact analysis of small pedigrees and the estimation methods on large 

pedigrees. Therefore, we tested to see if the K&C framework works for combining 

analyses for the traditional NPL. We expect it to work well considering that this 

is the statistic the K&C method was originally developed for. Figure 3.6 shows 

a comparison of the K&C results from Simwalk and a combined analysis, where 

the small pedigrees are analyzed by Mendel and just the 3 large pedigrees are 

analyzed in Simwalk and the results combined. The figure shows that the results 

are virtually identical, and very robust to missing data. 

3.4 Quantitative NPL Materials and Methods 

3.4.1 Variance Component Model Introduction 

Variance component methods are very powerful tools for mapping quantitative 

trait loci (QTL). In the standard variance component model the value of a quan-
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titative trait y for individual i is modeled as 

Vi = [i + pTz{ + a,i + qi + ei (3.3) 

where /J, is the population mean of trait y, z are the environmental predictors, a 

is the polygenic effect, q is the major trait locus effect and e is the residual error. 

Ignoring dominance effects, the variance of Y is 

Var(y) = Va + Vg + Ve (3.4) 

where Va is the additive genetic variance, Vg is the polygenic variance and Ve is 

the environmental variance. For non-inbred relatives i and j the trait's covariance 

is 

Cov{yu Vj) = 2$ijVa + 2^Vg (3.5) 

where $jj is the conditional kinship coefficient for i and j at a map location, and 

$y is the theoretical kinship coefficient for i and j . 

3.4.2 Q-NPL Statistic Definition 

The variance component methods as described above rely on a multivariate nor­

mal likelihood and suggests the following statistic for capturing differences from 

the null 

S = - l l n d e t n - \{y - ^~l{y - fi), (3.6) 

where JJL is the mean vector and Q, the variance matrix for the trait values. The 

rationale for this statistic will become clear as we discuss its properties. Typi-
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cally \x and Q, for the underlying pedigree or pedigrees are estimated from the 

data by maximum likelihood. Such estimation is computationally expensive and 

should be avoided whenever p-values are approximated by gene dropping or other 

sampling procedures. This suggests that we regress the trait values y on covari-

ates prior to analysis and employ a fixed value of Q. Thus, our first step is to 

substitute regression-based standardized residuals for the entries of y and omit 

the trait mean n from the model. 

Using a fixed value of ft is a less appealing step because a single Q cannot 

possibly reflect gradations in marker allele sharing among relatives in different 

chromosome regions. The resolution to this dilemma is to employ a different 0 for 

each descent graph at the disease locus. A descent graph, or inheritance vector, 

determines the gene flow in a pedigree by specifying a grand maternal or grand 

paternal source for every gamete passed. The probabilities of the different descent 

graphs at a given genome location can be computed conditional on the marker 

genotypes observed in the pedigree (Sobel and Lange, 1996). These conditional 

probabilities can in turn be used to compute the conditional expectation of an IBD 

(identity by descent) scoring function such as (3.6). The conditional expectations 

from different pedigrees can be combined into a single NPL test statistic (Lange, 

2002; Lange and Lange, 2004). 

The question now becomes one of proposing a simple random effects model for 

the inheritance of the trait conditional on a given descent graph. Such a model has 

to balance computational efficiency with power to detect linkage. Computational 

efficiency argues for an additive model because we know only the pattern of gene 

flow, not what disease allele flows along each descent path. The model should 

also incorporate random effects. If there are / unrelated founders, then under 
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an autosomal model there are 2 / ancestral genes and consequently 2/ random 

effects. Under Hardy-Weinberg and linkage equilibrium, these random effects are 

uncorrelated. These considerations prompt the model 

2/ 

tt = ^J>X + ̂ , (3-7) 
s = l 

where / is the identity matrix, a2 is the additive variance, a2 is the environmental 

variance and the ith component usi of the vector us has value 0, 1, or 2 depending 

on whether person i inherits 0, 1, or 2 genes from founder source s. 

Several assumptions are implicit in this model. One is the incorporation of 

random environment via the term a2I. A second is that a non-inbred person 

has total variance 2a\ + <j\. Because y is standardized, it is natural to assume 

2al + a2 = 1 and define the heritability h2 = 2o\. This convention allows us to 

rewrite equation (3.7) as 

2/ 

n = 2h2S^vsvl + {l-h2)I, (3.8) 
s = l 

where the possible values of the components of vs are 0, | , and 1 instead of 0, 1, 

and 2, respectively. 

A third assumption is the neglect of additive polygenic effects. This sounds 

like a serious omission, but it is worth recalling that we are engaged in hypothesis 

testing not parameter estimation. Although it is true that additive polygenic and 

major gene contributions will be confounded, we are looking for excessive contri­

butions by a major gene. The average value of f2 in the absence of marker data 

captures polygenic inheritance. If a major gene is present and marker coverage 

40 



www.manaraa.com

is good, then the conditional probabilities of one or just a few descent graphs 

will dominate. For these descent graphs, we want a variance decomposition that 

favors contributions by the major locus. The is exactly what model (3.8) achieves. 

Computational speed is another reason for preferring the model. Inspection 

of equation (3.8) shows that fl is a rank 2 / perturbation of a diagonal matrix. 

This fact facilitates quick evaluation of detfi and f2_1. Ordinarily evaluation of 

these entities requires on the order of n3 arithmetic operations when f2 is n x n. 

However, the Sherman-Morrison algorithm brings these operation counts down 

to a multiple of n2 (Millar, 1987). In practice, we apply each of the two identities 

v / \+wtM lw 

detiM + ww*) = detMdet(l + w4M-1uO 

2/ times, starting from M = (1 - h2)I and detM = (1 - h?)n. 

We have another reason for preferring the statistic (3.6) under the decompo­

sition (3.8). Suppose we consider this statistic with a generic variance matrix E 

substituted for Q. Then on average, conditional on the given descent graph, the 

statistic has value 

E(S) = - i l n d e t i : - i £ ; [ ( y - / x ) * E - 1 ( y - / / ) ] 

= - i l n d e t E - Itr&^EKy - y){y - /i)4]} 

= - i l n d e t E - | f r ( E - 1 f ) ) 

Using standard results from multivariate normal theory, E(S) is maximized by 

taking E = f2. Finally, we anticipate that the statistic from equation (3.6) 

will perform well because it is closely related to the Mahalanobis statistic (y — 

41 



www.manaraa.com

/z)*£2 1(y — fj,) prominent in hypothesis testing and outlier detection. 

3.4.3 Pedigree Configurations and Data Simulation 

The same three pedigree configurations used in the analysis of the qualitative NPL 

were used in the analysis of the quantitative NPL (Figure 3.1). We simulated 

the same 9-marker microsatellite map as for the qualitative NPL as seen in Table 

3.1. We simulated a quantitative trait locus located half way between M4 and 

M5 at 35cM. The locus at 35cM has two alleles, a major allele with frequency 

0.8905 and a minor allele with frequency 0.1095. We modeled the quantitative 

trait as coming from 3 normal distributions based upon the individuals' genotype 

at the trait locus. The mean of the trait distribution for individuals homozygous 

for the major allele was equal to 2 (HAA), the mean for heterozygous individuals 

was equal to 0 (fiAa,aA), and the mean of the trait for individuals homozygous for 

the minor allele was equal to -2 (/i00). This gave an overall trait mean {ngi0bai) 

of 1.56 by solving equation (3.9), where PA is the allele frequency of the major 

allele and Pa is the allele frequency of the minor allele. 

^global = PA^AA) + 2PAPa {^Aa,aA) + P^aa) (3.9) 

The additive genetic variance of the trait VA is given by equation (3.10), 

VA = PA(^AA — ^global) + ^PAPa(^Aa,aA ~ ^global) + Pa {Haa ~ ^global) , (3.10) 

and is equal to 0.7831. The variance of the genotype specific distributions, 
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VE, was determined by solving equation (3.11) for VE, where h2 is the heritability 

of the trait. 

"2 " v£vE <»1) 

We studied the trait with heritability equal to 10%, 25% and 50%. We an­

alyzed the exact same pedigrees as were analyzed in the qualitative NPL work 

above. Individuals in these pedigrees were assigned a quantitative trait value 

based upon their genotype at the putative trait locus, and the models specified 

above. The pedigrees initially had no missing genotype information, but not 

necessarily complete phase information. The missing genotype patterns were de­

veloped based upon looking at the types of missing genotype patterns that were 

present in the 73 families investigated in the previous study (Pajukanta et al, 

2003). The study samples for each investigation were same as the study samples 

used in the qualitative investigations above. 

The proposed Q-NPL statistic was analyzed under the null hypothesis of no 

linkage to determine its biases, if any, and type I error rate. For each data set 

and for each heritability value we generated 1000 replicates via gene dropping. 

For each replicate the individuals were assigned trait values as follows: P\ of 

the assigned values were sampled from the distribution with mean 2, 2P^Pa of 

the assigned values were sampled from the distribution with mean 0, and P% 

of the assigned values were sampled from the distribution with mean -2. Each 

replicate was analyzed using statistic (3.6) and the p-value for each marker for 

each replicate was stored. 
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3.4.4 True Null Distribution Construction 

To construct the true null distribution of the quantitative NPL score we simulated 

10,000 unlinked pedigrees for each pedigree in the study sample via gene dropping. 

Each of the 10,000 replicate pedigrees mimicked the corresponding pedigree in 

the study sample in the trait value and missing data pattern. The NPL statistic 

was calculated at each location along the marker map for each of the 10,000 

pedigrees using Mendel (Lange et ai, 2001). The NPL statistics were combined 

at each locus to build the true null distribution for the overall study sample. 

The calculated total NPL score for the study sample was tested against this null 

distribution to determine the number of scores that were greater than or equal 

to the calculated score. The p-value for the significance of the allele sharing was 

that count divided by 10,000. 

3.4.5 Implementation of Qualitative K&C Linear Model 

The original K&C extension assumed that we are limited to utilizing the score 

generated by traditional NPL methods (Kong and Cox, 1997). But they state 

that the score used can be any function that has a higher expected value under 

linkage than under no linkage, which our proposed Q-NPL score satisfies and 

therefore allows us to use the K&C extension here as well. The K&C linear model 

is implemented in Mendel exactly as described in the original paper except we 

substitute the score from our new statistic for Mendel's calculated z-score from 

the traditional NPL method (Kong and Cox, 1997; Kruglyak et ai, 1996). The 

Simwalk2 implementation is the same as described above for the qualitative NPL, 

except we substitute the score from our new statistic for Simwalk's calculated z-
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score from the traditional method. 

3.4.6 Program Comparisons 

Mendel and Simwalk2 are the only programs that implement the new Q-NPL 

method, therefore only those programs and the K&C extensions are analyzed 

against the true null distribution of the score shown in equation (3.6). 

3.5 Quantitative NPL Simulation Analysis 

The first step in evaluating a new statistic is examining its behavior under the null 

hypothesis to assure that it is unbiased and correctly controls the type I error rate. 

The null hypothesis for each marker is that it is not linked to the quantitative trait 

under investigation. To show that the statistic is performing correctly under the 

null hypothesis the distribution of p-values for each marker should be uniform. 

Figure 3.7 shows the distribution of p-values for Marker5 from 1000 replicates of 

pedigree configuration 2 (Figure 3.1b) simulated with heritability equal to 50%. 

As the figure illustrates the distribution of p-values is approximately uniform 

and therefore the statistic is performing correctly under the null hypothesis. All 

markers under all conditions investigated showed a similar approximate uniform 

distribution of p-values as seen in Figure 3.7. Now that we know the statistic 

proposed in equation (3.6) behaves appropriately under the null hypothesis, we 

need to determine its power to detect linkage. 

We first tested the power of the new Q-NPL statistic to detect linkage in a 

sample of 51 nuclear families (Figure 3.1a). We simulated the quantitative trait 

with heritability equal to 10%, 25% and 50%. The Q-NPL statistic was not 
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Figure 3.7: Q-NPL P-Value Distribution 
Pedigree Configuration 2, Marker5, 50% Heritability. 
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able to detect any significant linkage signal with a trait with 10% heritability. 

The Q-NPL statistic does have power to detect a significant linkage signal with 

heritability of 25% and 50%. The results for the analysis of the trait with 25% 

heritability is seen in Figure 3.8. The results illustrate that the exact Q-NPL 

statistic as calculated by Mendel shows good power and proves to be very robust 

against missing genotype data. The missing data patterns were formed as de­

scribed above for the qualitative trait analysis. Figure 3.8 also demonstrates that 

the K&C extension to the new Q-NPL statistic is virtually identical to the true 

null distribution we created through extensive simulation. The K&C method 

does not require any sampling to create the null distribution therefore provid­

ing a huge computational savings. Neither the standard Simwalk2 nor Simwalk2 

K&C extension shows much power at this level of heritability, and they both are 

very sensitive to missing genotype information. Both Mendel and Simwalk2 show 

good power to detect the linkage signal when the trait is simulated with 50% her­

itability as seen in Figure 3.9. Again the K&C extensions are the most robust 

statistics against missing genotype information and closely mirror the curve from 

the 'true' null distribution. 

We next tested the Q-NPL's performance in a sample of 14 3-generation 

pedigrees (Figure 3.1b). None of the implementations were able to detect a 

linkage signal when the trait was simulated with 10% heritability. The results 

for the quantitative trait simulated with 25% and 50% heritability can be seen 

in Figures 3.10 and 3.11, respectively. The missing data patterns were formed 

as described above for the qualitative analysis. As Figure 3.10(A) illustrates 

all the implementations have very good power to detect the linkage signal with 

a heritability of 25% and no missing genotypes, but as panels (B)-(D) reveal 
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none of the applications can detect the signal with significant amounts of missing 

genotypes. When the trait is simulated with 50% heritability and no missing 

genotypes all the methods are extremely powerful in detecting the signal as Figure 

3.11(A) illustrates. In fact the plateau of significance for the true null, Mendel 

and Simwalk occurs at the limit of detection due to the number of replicates used 

in constructing the testing distribution. Panels (B)-(D) of Figure 3.11 illustrates 

that Simwalk2 is the most sensitive to missing genotype information, but that 

the K&C extension for Simwalk2 is much more robust to missing genotypes. The 

exact implementation in Mendel and the Mendel K&C extension are also robust 

to missing genotypes, achieving the significant linkage signal threshold of > 2 

with as much as 30% missing genotypes. 

Figure 3.1c is an extended 45 individual, 5 generation pedigree structure that 

is too large to be handled by exact methods of analysis. We analyzed a sample of 

17 such pedigrees using Simwalk. Simwalk was able to detect the linkage signal 

with the heritability of the quantitative trait equal to 10%, 25% and 50%. Figures 

3.12 and 3.13 show the results of the analysis with heritability equal to 10% 

and 25% heritability respectively. The missing data patterns were constructed as 

described above for the qualitative analysis. As the figures demonstrate these very 

large extended pedigrees contain a lot of information and therefore are able to 

detect the linkage signal for a quantitative trait with only 10% heritability (Figure 

3.12A-D). Simwalk and especially the K&C extension are very robust to the 

missing genotypes. The curve for the 10% heritability and 30% missing genotypes 

(Figure 3.12C) looks odd and may just be an artifact of the way in which we 

generated the missing genotype pattern. When the trait is simulated with 25% 

heritability, the signal is so strong that Simwalk's significance curve plateaus at 
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4, its significance limit due to the number of replicates used to construct its null 

distribution. Again the K&C extension does not have this constraint because 

its significance test is based upon the standard normal distribution and does not 

require sampling. 

Real data sets are commonly composed of a variety of pedigree structures, 
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therefore we tested the Q-NPL's power in such a sample. We constructed a data 

set that contains various numbers of the above data structures as described in 

Materials and Methods. This mixture configuration contains 3 pedigrees that 

are too complex to be analyzed exactly and therefore were not included in the 

calculations for the curves produced by Mendel or the true null distribution. The 

mixture configuration was analyzed with heritability of the trait equal to 10% 

(Figure 3.14), 25% (Figure 3.15), and 50% (Figure 3.16). The missing data pat­

terns were the same as described above for each individual pedigree structure. 

As the figures illustrate, the Q-NPL statistic is able to detect a linkage signal for 

all three heritabilities given enough genotype information. The signal with heri­

tability equal to 10% drops off dramatically with missing genotype information, 

with Simwalk being the most sensitive. Even though with missing genotypes of 

20%, 30% and 40% none of the methods reach our significance threshold of 2, 

the Mendel K&C extension follows the true null distribution under all conditions. 

With a heritability of 25% the Q-NPL statistic is able to detect the linkage signal 

under all conditions of missing genotype information, again with Simwalk being 

the most sensitive to the missing genotypes. The linkage signal is so strong with 

heritability of 50% that all methods perform well under all missing data patterns. 

Figure 3.16 also demonstrates that there is significant information in the 3 large 

pedigrees that Mendel cannot handle, but that Simwalk is able to include. 

The K&C framework allows the possibility to combine the exact calculation 

of Mendel on small pedigrees with the estimation method in Simwalk on large 

pedigrees and return a single significance score. This is accomplished by using 

the Z-scores and b-values from the separate programs and using them in the 

K&C method as if they came from a single program. This framework makes 
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sense in the context of the mixture configuration. To test this idea we used the 

mixture configuration with 25% heritability and analyzed the small pedigrees in 

Mendel and just the 3 large pedigrees in Simwalk, combined the results and ran 

the K&C method. The results of this method are seen in Figure 3.17, where 

Combined K&C represents this new framework. The combining of the methods 

works well and is very robust to missing genotypes. This is also a very appealing 

framework because it alleviates the computational burden of sampling to test for 

significance. 

3.6 Real Data NPL Analysis 

The results of the simulation studies are striking, but an important question 

is how relevant are they to the analysis of real data. To investigate this we 

analyzed the data set from a previously published gene-mapping study that used 

traditional NPL analysis (Pajukanta et al., 2003). The published results were 

based upon a sample of 73 pedigrees with sizes from 4 to 59 individuals. The 

overall percentage of missing genotypes in the study sample was approximately 

56%, with individual pedigrees having percentages from 25% to 94% missing 

genotypes. One reason for this seemingly very high missing data rate, is that the 

dataset was not collected as a single data sample, but instead it was 3 separate 

studies combined into a single dataset. Of the nine markers investigated in our 

analysis one sample was genotyped at 6 markers, another at 7 markers, and 

the third at 8 markers. Therefore to get a better idea of missing data in each 

of the designed investigations we separated the dataset into its 3 independent 

datasets and re-analyzed the amount of missing genotypes. The results were 
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one data set had 38% missing genotypes, another had 55%, and the other had 

36% missing genotypes. Pajukanta also indicated that only nuclear families had 

been genotyped for cost-benefit purposes. But missing genotypes in the pedigree 

structures, regardless of the reasons, reduce the amount of information in the 

pedigrees and affect the analysis. Based upon our analysis of the Pajukanta et 

al. data, the amount of missing genotype data in our analyses are consistent with 

actual data being used in mapping studies. Furthermore, inspecting the missing 

data patterns in these pedigrees showed that the patterns we investigated in the 

simulation studies were indeed similar to the patterns found in the real data. 

Pajukanta et al. used Simwalk to perform their analyses since they had several 

large pedigrees that the exact programs couldn't handle and did not want to 

discard any of their data. Given the amount of missing genotypes in the study 

sample and the results from the simulation studies showing Simwalk's limitations 

with that degree of missing information we decided to re-analyze the Pajukanta 

et al. data with the new K&C implementation in Simwalk and the Combined 

K&C implementation. The results of our re-analysis of the data can be seen in 

Figure 3.18. As a comparison we also analyzed the data with the exact traditional 

method from Mendel and the exact K&C implementation in Merlin. Due to the 

algorithms used in these programs which limit the size of the pedigrees that can 

be analyzed, Mendel's curve is based upon excluding 8 pedigrees that were too 

big and Merlin's K&C curve is based upon excluding 4 pedigrees that were too 

big. Figure 3.18 shows that excluding these large, complex pedigrees reduces 

the amount of relevant information and therefore misses a significant linkage 

signal around 13 cM in the map. The figure also reveals again that Simwalk's 

K&C implementation far outperforms its traditional method. The figure also 
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shows that the traditional NPL method, as represented by Mendel, performs 

much worse than the K&C method when this level of missing data is present. 

This analysis also reveals that the Combined K&C analysis closely mirrors the 

Simwalk K&C curve, and at a significant computational savings. In addition, we 

obtained HDL cholesterol measurements for the individuals in the study sample 

and performed Q-NPL analysis. In our analysis we set the heritability equal to 

50%, used the raw HDL values with the outliers removed and standardized the 

values. The results of our analysis can be seen in Figure 3.19. The results for the 

Q-NPL analysis are not as significant as the traditional qualitative NPL, which is 

counter intuitive. Although the qualitative NPL analysis gave a strong signal for 

the dichotomized HDL trait, this data set is not ideal for a quantitative analysis. 

As Pajukanta et al. stated in the original paper, the genotyping strategy they 

used which resulted in the large amount of missing genotypes discussed above 

also resulted in limited phenotypic variation in the measured quantitative traits 

(Pajukanta et al, 2003). Additionally, of the 73 pedigrees analyzed 48 were 

ascertained for familial combined hyperlipidemia and only 25 were ascertained 

based on their HDL-C values thus creating heterogeneity in the sample. Given 

these considerations, it reflects favorably on our new method that Mendel's Q-

NPL is able to reach the significance threshold of 2 for a linkage peak around 

5 cM. The fact that Mendel was unable to reach that threshold when analyzing 

the data with the traditional qualitative NPL method as seen in Figure 3.18 also 

reflects favorably on the new method. The results also show Simwalk's sensitivity 

to missing genotype information in the Q-NPL analysis. 

63 



www.manaraa.com

4 

3.5 

3 

0 5 10 15 20 25 30 

cM 

O M e n d e l =A=K&C °0-Simwalk -O-Simwalk K&C -1-Combined K&C 
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3.7 Discussion 

We have proposed and shown results from a new test statistic for performing 

quantitative NPL (Q-NPL) analysis based upon a simple random effects model 

motivated from variance component models. The test statistic looks for excessive 

contributions by a major gene, and is involved in hypothesis testing not param­

eter estimation which makes the statistic computationally efficient. We have 

illustrated that the method is applicable to general pedigrees, works well in the 

context of exact analysis on small pedigrees and estimation techniques utilized in 

the analysis of large, complex pedigrees and fits nicely into previous work for ap­

proximating p-values for NPL statistics (Lange and Lange, 2004). Additionally, 

we have shown that the statistic works within the framework of the 1-parameter 

K&C extension to the traditional qualitative NPL method. The method correctly 

controls the type I error, displays a good ability to detect linkage and is robust 

to missing genotype information. 

The research has revealed that Simwalk's NPL method, both qualitative and 

quantitative, is extremely sensitive to missing data. In fact, with missing geno­

types at levels in real data sets it is potentially missing significant signals of 

linkage. We have also shown that the K&C NPL extension, which was originally 

developed for the exact methods, can be extended to work with the estimation 

techniques that Simwalk employs to perform NPL analysis on large, complex 

pedigrees. Even more significantly, the qualitative Simwalk K&C implementation 

has been shown to perform virtually identically to an exact qualitative analysis 

method. Thus researchers will be able to analyze large, complex pedigrees that 

the exact methods can't analyze, yet still get results as robust as if they were 
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analyzed by an exact method. 

This research has also given an insight into the workings of the perfect data ap­

proximation technique of determining significance in the traditional NPL method. 

Kruglyak et al. in their original paper stated that the perfect data approximation 

was a conservative method of determining significance and would be less conser­

vative the closer to complete information the data was, but to our knowledge 

no one has ever published an analysis of when perfect data approximation gives 

too conservative an estimate and misses a significant linkage signal. Our analy­

sis of Genehunter's (data not shown), Merlin's (data not shown), and Mendel's 

traditional NPL methods have shown that in datasets with 30% missing geno­

types or greater, which based upon our experience is not uncommon, the use of 

perfect data approximation to determine significance actually means that these 

programs will often miss linkage signals. This makes us concerned that previous 

analyses might have given researchers false negatives. Therefore we believe that 

researchers should consider re-analyzing previous NPL investigations if upon re­

view the data sets have > 30% missing genotypes. We recommend using the 

K&C method in the re-analysis. Another good alternative is the replicate-pool 

method (Lange and Lange, 2004; Lange, 2002; Song et al, 2004). Our analysis 

shows that using the replicate pool method gives similar results as our true dis­

tribution with significant computational savings, and Wigginton et al. have come 

to similar conclusions (Wigginton and Abecasis, 2006). 

An important and exciting development from this work is that the Kong&Cox 

method provides a framework to create a state of the art NPL method. The K&C 

framework allows the results from exact analysis to be combined with results 

from estimation techniques for either the quantitative or qualitative NPL, as can 
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be accomplished today for parametric linkage analysis. This combined analysis 

option significantly speeds up the calculation, alleviates the conservativeness of 

perfect data approximation, and most importantly allows each pedigree to be 

analyzed by the best available method without losing information from the total 

sample. 
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Chapter 4 

Efficient use of Dense SNP Maps 
for Relationship Construction and 
Gene Mapping 

4.1 Introduction 

Modern genetic analysis methods can use information about the degree to which 

the subjects are related to increase the power to identify the genetic etiology of the 

trait under investigation. There are a number of ways to measure relatedness, 

but perhaps the most widely utilized measure is the number of alleles that a 

pair of individuals share identical-by-descent (IBD). Identical by descent means 

that the two alleles are copies of a gene from a shared ancestral relative. This 

differs from individuals sharing alleles identical by state (IBS) which means that 

the alleles are of the same form, but are not copies of a gene from a shared 

relative. Measurements of IBD are used in linkage studies, association tests, 

and in quantitative-trait locus (QTL) mapping. Misspecification of the degree of 

relatedness in a sample can have dramatic affects on the results of these analyses, 

in some cases reducing the power to detect a signal and in some cases giving false 

positive results. Therefore it is very important to accurately measure, specify 
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and account for the IBD among individuals in genetic studies. 

Due to its importance in genetic analyses, the development of methods to 

determine pairwise relatedness or account for it in the tests conducted has been 

an active area of research. With the large number of molecular markers now 

typed in genetic studies, researchers have focused on using these markers to 

both determine IBD among subjects as well as adjust the test statistics used 

by accounting for the amount of IBD in the sample. The methods developed to 

identify and quantify pairwise relationships stems from Thompson's early work 

showing that markers can be used to estimate relationships (Thompson, 1974, 

1975). Since Thompson's work there have been a number of different methods 

developed to either test specified IBD relationships or estimate IBD relationships 

without prior specification. The development of methods to estimate measures of 

IBD from molecular markers have, up to this point, been focused on the analysis 

of natural populations where pedigree construction is difficult; and the developed 

methods have been based upon the 'method of moments' concept (Lynch and 

Ritland, 1999; Mousseau et ai, 1998; Queller and Goodnight, 1989; Wang, 2002). 

Methods developed to test the accuracy of specified IBD relationships have been 

developed for human genetics pedigree analysis, and have primarily taken the 

form of statistical tests to identify incorrectly specified relationships (Boehnke 

and Cox, 1997; Ehm and Wagner, 1998; Epstein et ai, 2000; McPeek and Sun, 

2000; Sun et ai, 2002). 

In recent years, the use of genome-wide case-control association tests has 

gained favor as the method of choice for mapping variants of complex disease 

(Risch and Merikangas, 1996). Unspecified or unaccounted relatedness, includ­

ing population structure, in the study sample can increase the false positive rate. 
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This fact has lead to the development of association tests that account for relat-

edness in the test statistic itself, by investigating the markers in the data. The 

methods test and account for population stratification/substructure (Pritchard 

and Rosenberg, 1999; Reich and Goldstein, 2001; Satten et al, 2001), account for 

so-called cryptic relatedness among individuals (Devlin and Roeder, 1999; Ba-

canu et al, 2000; Voight and Pritchard, 2005; Slager and Schaid, 2001), or both 

(Yu et al, 2006). A recent study showed that in certain populations or studies 

with "poor" design/ascertainment that there can indeed be high levels of cryptic 

relatedness that can drastically inflate the false positive rate in association tests 

(Voight and Pritchard, 2005). But we believe that instead of just accounting 

for relatedness in the test statistic, if there was a method to estimate a useful 

measure of relatedness (e.g. theoretical and conditional kinship coefficients) it 

would allow for more powerful quantitative association analysis to be performed. 

The theoretical kinship coefficient is determined solely from a pedigree structure, 

and for a pair of relatives i and j at a locus k is the probability that an allele 

selected randomly at k in individual i is IBD to an allele chosen randomly at 

k in individual j . The conditional kinship coefficient also gives the probability 

for randomly chosen alleles at k for individuals i and j matching IBD, but this 

probability uses the pedigree structure and is conditioned on all known genotypes 

of i and j . 

In this paper we describe three new, related algorithms using whole-genome 

SNP data to estimate pairwise IBD coefficients without prior information of re­

latedness. The first algorithm is used to estimate theoretical kinship coefficients. 

The second estimates conditional kinship coefficients. The third uses the first pro­

cedure to cluster individuals into pedigrees. We then show how these procedures 
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can be used to improve association and linkage-based gene mapping studies. 

The first algorithm, to estimate theoretical kinship coefficients, is a simple 

closed-form, likelihood-based method of moments algorithm that estimates the 

kinship coefficient between pairs of individuals in a homogeneous population. Our 

method only requires allele frequencies for the markers utilized in the method, and 

investigates IBS matching in order to model the amount of IBD sharing between 

pairs of individuals. Our method is based upon the availability of high-density 

whole-genome SNP panels, and confirms that with a large number of markers 

a method of moments approach can accurately estimate relatedness coefficients 

(Milligan, 2003). This method allows researchers to quickly identify misspecified 

relationships similar to the statistical tests mentioned above (Boehnke and Cox, 

1997; Ehm and Wagner, 1998; Epstein et al, 2000; McPeek and Sun, 2000; Sun 

et al., 2002), but also gives a parameter that would allow the inclusion of the 

misspecified data with corrected values. This method will also allow researchers 

with case-control data to discover cryptic relatedness in their sample and take 

appropriate steps to maximize the power of their analysis. 

The second algorithm uses the pairwise theoretical kinship estimate in a 

discrete, penalized optimization technique to estimate the pairwise conditional 

kinship coefficient at every SNP. This procedure uses the method-of-moments 

point estimates at every SNP and the theoretical kinship coefficient estimate 

to assign every SNP to one of the four possible conditional kinship coefficients 

($ = 0,^,^,1) for two individuals at a biallelic SNP. Each kinship coefficient 

corresponds one of the four possible IBD configurations that two individuals can 

display (IBD — 0, 1, 2, 4 alleles shared identical-by-descent). 

The third algorithm combines the first algorithm with an algorithm from 
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graph theory to cluster individuals into pedigrees. This hybrid algorithm con­

siders all individuals with genotype data as nodes in an undirected graph. The 

first algorithm described above defines the edges between the individuals, and 

the standard algorithm to find the connected components of a graph clusters in­

dividuals into pedigrees. The pedigree clusters defined by this third method can 

then be analyzed by the first two algorithms to estimate the coefficients for use 

in downstream analysis, such as QTL mapping. 

In this chapter we will demonstrate our methods' ability to correctly estimate 

the theoretical and conditional kinship coefficients of known genetic relationships. 

We also discuss our method's sensitivity to allele frequency misspecification. The 

methods' utility and performance are illustrated using both real and simulated 

data. 

4.2 Materials and Methods 

4.2.1 Materials 

We used the Affymetrix Mapping 10K, 100K, 200K, and 500K SNP sets as repre­

sentative whole-genome high-density SNP panels. In the simulation studies, we 

used the Caucasian allele frequencies specified in the chip annotation files pro­

vided by Affymetrix. We then generated genotypes via gene-dropping using the 

software package Mendel (Lange et al., 2001). For analysis of the methods' ap­

plicability in QTL analysis we analyzed a data set provided by John Blangero at 

the Southwest Foundation for Biomedical Research consisting of 1942 Mexican-

American individuals from the San Antonio, TX area with 107 singletons and 

the rest of the individuals spread over 46 pedigrees. Of the 1942 individuals in 
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the sample 858 of them were genotyped on the Illumina 550K genotyping array 

and phenotyped for a quantitative trait. In our analysis we used the maximum 

likelihood based allele frequencies provided by the Southwest Foundation. 

4.2.2 Methods 

Assumptions 

The methods are based upon the assumption that every homogeneous popula­

tion sample is part of a large extended pedigree in which the familial relations 

are not observed. The methods also assume that the allele frequencies for ev­

ery marker are known with low error rates. The conditional kinship estimation 

method also assumes that haplotypes occur in blocks and therefore neighboring 

loci should have the same kinship coefficient (Patil et ai, 2001; Daly et ai, 2001; 

The International HapMap Consortium et ai, 2003). 

Algorithm 1: Estimating Theoretical Kinship Coefficient 

To estimate the theoretical kinship coefficient between two individuals we have 

constructed a simple, closed-form, likelihood-based algorithm. The algorithm is 

based on using the number of identity-by-state (IBS) matches observed in an 

extended segment of SNPs as an estimate for the expected number, which is a 

function of the theoretical kinship coefficient. The observed fraction of matches 

IBS between two individuals, designated euv for individuals u and v, for an au­

tosomal chromosome is calculated as 

-E ^l{/ i = Kt} + j l { / i = Li} + ^{Ji = Ki} + ~l{Jt = U} (4.1) 
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where the sum is taken over all m marker loci, / and J are the alleles of individual 

u, K and L are the alleles of individual v, and the 1 represents an indicator 

function that equals one when the IBS condition is met between the alleles and 

zero otherwise. For the analysis of the X chromosome, if individuals u and v are 

both females then no alteration of equation (4.1) is needed. If individual u is a 

male and individual v is a female then equation (4.1) is altered to 

1 1 
^ { / i = Ki} + -j}{h = Li} (4.2) 

and if both individual u and individual v are male then equation 4.1 is altered to 

eUv = / J [lUi = Ki}] , (4.3) 

The total expected number of matches, either IBS or IBD, on either an autosome 

or the X chromosome is given by: 

$+(i-$)5>^ (4.4) 

where the sum is taken over all m marker loci, 3> is the kinship coefficient, and the 

sum of the second term is taken over all n alleles at each loci with pij representing 

the allele frequency for allele j at marker i. The first term of the sum accounts 

for the probability of matching IBD, while the second term accounts for the 

probability of matching IBS but not IBD. Setting either equation (4.1) or (4.2) 

or (4.3) equal to equation (4.4) and solving for the kinship coefficient $ gives, 

$ = (4.5) 
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which provides an unbiased estimator of <E>. When considering a single marker, 

equation (4.5) yields a point estimate of <J>, which is related to the traditional 

conditional kinship coefficient. In the next section we describe an algorithm that 

uses these point estimates to obtain a much better estimate for the conditional 

kinship coefficient. Although we provide a framework for performing the analysis 

on the X chromosome, we only discuss and show results for our analysis of the 

autosomes. 

Algorithm 2: Estimating Conditional Kinship Coefficient 

To estimate the conditional kinship coefficient between two individuals at a spe­

cific locus we have developed a discrete, penalized estimation algorithm that uses 

a chromosome-wide estimate of the theoretical kinship coefficient from equation 

(4.5), and the point estimates that equation (4.5) gives for a specific locus. Given 

that all the markers under consideration are biallelic SNPs, the only possible val­

ues for the conditional kinship coefficient at a locus are 0, \, | , or 1. Therefore 

the fundamental idea of the algorithm is to assign the continuous point estimate 

of the kinship coefficient for a locus to one of these four discrete sets. The set of 

loci where the kinship coefficient equals 0 is designated So; similarly, the set with 

kinship coefficient \ is designated S\\ the set with kinship coefficient \ is desig­

nated £2; and the set with kinship coefficient 1 is designated S4. The algorithm 

proceeds through a four step process for each chromosome to assign each locus 

to one of the four sets: 

1. Calculate chromosome-specific estimate of theoretical kinship coefficient 

2. Block the stretches of IBS = 0 
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3. Refine locus-specific kinship coefficient point estimates 

4. Find optimal set assignment for each locus by minimizing via dynamic 

programming an objective function based on penalized optimization . 

The first three steps in the algorithm can be considered pre-processing steps to 

initialize the data for the penalized estimation. 

The first step is to calculate a chromosome-specific theoretical kinship coeffi­

cient as described in the previous algorithm. During this process, save each locus' 

point estimate, and keep track of whether the locus was IBS = 0 (i.e., no alleles 

in common between the two individuals) or IBS = 1 (i.e., all four alleles identical 

among the two individuals). 

In step two we block stretches of loci that were flagged IBS = 0. The reason for 

flagging loci that are IBS = 0 is that these loci actually are the most informative 

for correctly assigning the locus to the correct set. If a locus is IBS = 0 we know 

with certainty that the locus is IBD = 0 and therefore can anchor our estimation 

at these loci. The assumption of the block nature of haplotypes means that 

neighboring loci should be similar; therefore we search for blocks of loci that 

have been flagged as IBS/IBD = 0. We scan each chromosome from the start to 

the end and look for flagged loci that are separated by less than one megabase. 

For each such interval we set the kinship coefficient point estimate for each locus 

in the interval equal to 0. Tracking loci that have IBS = 1 allows a computational 

savings in the estimation algorithm because we do not need to consider loci as 

belonging to S4 unless they are IBS = 1. 

In the third step, we refine the point estimates for the kinship coefficient 

obtained at each SNP. Since the initial point estimates are poor, we use our 
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assumption that neighboring loci should have similar values to refine these esti­

mates for each locus by considering the point estimates of neighboring loci in a 

small window centered on the current locus. We refine the estimates by calcu­

lating a modified version of equation (4.5) using all the markers in the window. 

Equation (4.5) is modified by weighting the point estimate at each locus in the 

window by its heterozygosity, where the heterozygosity of locus i is calculated by 

Wi = 1 — £?=1(Pz,j)2- The estimate of the kinship coefficient for the SNP at the 

center of the window becomes, after substitution and simplification, 

$ = ̂ i (^-g=ifo ' -> ' ) (46) 

£r=i(i-£;=1fe,;)2) 

where m is the number of loci in the window, el
uv is the number of IBS matches 

between individuals u and v at locus i and pij is the allele frequency of allele j 

at locus i. The number of loci m in the window is based on the average spacing 

between loci on a chip, but are selected so that the window is approximately 

50KB on either side of the centered SNP. This is the last preprocessing step and 

the refined point estimates are the input into the penalized estimation technique. 

In step 4, the penalized estimation finds the zi,...,zm which minimize the 

objective function 

nz) = 5>-o)2 + 5>-^)a + Efo-5)2 

ieSo ieSi ies2 
m m— 1 

+j^iyi - !)2+Ai Y,^ ~$c/-)2 +As E ^ + i - ztf (4-7) 
i€S4 i=l i=l 

77 



www.manaraa.com

where Zi is the conditional kinship coefficient at SNP i, and has the possible val­

ues 0, | , | , and 1, and yt is the point estimate for the kinship coefficient at locus 

i obtained in the previous step. The Ai is the penalty for the conditional kin­

ship coefficient being different from the chromosome-specific theoretical kinship 

coefficient estimate <&chr- The coefficient A2 is the penalty for neighboring loci 

belonging to different kinship coefficient sets. 

This problem can be solved using dynamic programming in a single pass of the 

data. The dynamic programming solution begins by formulating the objective 

function (4.7) as 
m m—\ 

The function fi(zi) has four possible formulations, one for each possible state at 

a locus: 

fi(zi = 0) = (Vi-0)2 + Aa(0 

Mzi = k) = {yl-\f + Ax(i 

fi(Zi = l) = ( y , - l ) 2 + Ai(l 

and the penalty function gi(zi,Zi+\) is 

9i(zi, zi+l) — ^2\Zi+\ — Zi) 

To solve by dynamic programming define hi{z\) = /l(-Ji) and for k > 1, 

fc fc-i 

hk{zk)= min E^(2*) + E#( z * ' Zi+1)' (4-n) 

<Pchr) 

4>chr) 

<t>chr) 

4>chr) , 

(4.9) 

(4.10) 
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We record the values hk(0), hk(\), hk(D, and hk(\). Then 

hk(zk) = rrim{hk-\{zk-\) + 9k-\{zk-i,zk)} + fk{zk) (4-12) 

is the needed recursion. Finally, we set zm to the value that minimizes hm(zm) and 

obtain the zi,... ,zm-i through the standard dynamic programming traceback 

procedure. 

Algorithm 3: Pedigree Construction 

There has been a substantial body of work in utilizing genotype data to test for 

pedigree misspecification (Boehnke and Cox, 1997; Ehm and Wagner, 1998; Ep­

stein et ai, 2000; McPeek and Sun, 2000; Sun et al, 2002). All of these methods 

perform statistical inference on specified pedigrees and return relationships with 

a high probability of misspecification, and some propose the most probable true 

relationship for the identified errors. But none of these methods perform infer­

ence between pedigrees to test for cryptic relatedness in the study sample. We 

propose a new method to construct 'pedigrees' from the genotype data and there­

fore avoid the computational cost of statistical inference testing while allowing 

for the discovery of cryptic relationships between pedigrees. 

The method we have developed is based on graph theory. We consider every 

individual with genotype data as a node in an undirected graph. The pedigree 

discovery problem is equivalent to finding all the connected components of this 

individual graph. We use our method for estimation of the theoretical kinship 

coefficient to find the edges between individuals that link them in a component or 

pedigree. The inputs into the method are the individuals' genotypes and a cutoff 
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value that the theoretical kinship estimation method must reach to designate an 

edge between individuals. Construction of these pedigrees is an efficient process 

to run because of the use of the standard algorithm for finding the connected 

components of a graph, and in the worst case scenario of no individuals in the 

data set being linked for a specified cutoff our method performs 0(n2) theoretical 

kinship estimation calculations where n is the number of individuals. 

Assessing Performance and Properties in Simulations 

The method for estimating the theoretical kinship coefficient was tested using sim­

ulated data. The simulations were undertaken by using the pedigree structure in 

Figure 4.1, and generating 500 different pedigrees of that structure by producing 

genotypes for the individuals via gene dropping in the program Mendel (Lange 

et al, 2001). The true theoretical kinship coefficient was calculated exactly for 

the pedigree using the algorithm described by Lange (Lange, 2002). The per­

formance of our method was then assessed by analyzing the distribution of the 

estimated coefficients of all the pairwise relationships from the 500 generated 

pedigrees and comparing to the true theoretical kinship coefficient. Of course 

the estimated values were found without any knowledge of the pedigree struc­

tures. We also tested the constructed distributions for normality by using the 

Kolmogorov-Smirnov test. We conducted a one sample Kolmogorov-Smirnov test 

using our estimates and testing against a normal distribution with mean equal to 

the sample mean and standard deviation equal to the sample standard deviation. 

This process was conducted on the 10K, 100K, 200K, and 500K Affymetrix chip 

information to assess the relationship between the number of SNPs and the ac­

curacy of the estimate. Since our method assumes correct allele frequencies, we 
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also tested our method's sensitivity to allele frequency misspecification. This was 

accomplished by gene-dropping under one set of allele frequencies and analyzing 

the data with a different set of allele frequencies. Each chip's performance was 

assessed under the following conditions: 

1. All loci gene-dropped with major allele frequency increased and decreased 

by 1% and 5% from allele frequency used in analysis 

2. 25% of loci gene-dropped with major allele frequency increased and de­

creased by 1% and 5% from allele frequency used in analysis 

3. 50% of loci gene-dropped with major allele frequency increased and de­

creased by 1% and 5% from allele frequency used in analysis 

4. All loci gene-dropped with major allele frequency drawn from a normal dis­

tribution with mean equal to major allele frequency and standard deviation 

0.025 x major allele frequency 

5. All loci gene-dropped with major allele frequency drawn from a normal dis­

tribution with mean equal to major allele frequency and standard deviation 

0.05 x major allele frequency 

6. All loci gene-dropped with major allele frequency drawn from a normal dis­

tribution with mean equal to major allele frequency and standard deviation 

0.075 x major allele frequency 

7. All loci gene-dropped with major allele frequency drawn from a normal dis­

tribution with mean equal to major allele frequency and standard deviation 

0.10 x major allele frequency 
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Figure 4.1: Simulated Pedigree Structure 

For each of the above conditions we performed the same analysis as with the true 

allele frequencies. 

The estimation procedure for conditional kinship coefficients was also assessed 

via simulation studies. The same 500 pedigrees analyzed for the theoretical kin­

ship estimation were used for testing the conditional kinship coefficient estima­

tion. The accuracy of the method was determined by comparing the calculated 

estimate for each locus Zi, described above, to the true value U obtained from 

using equation 4.1 on a single locus at a time from a gene-dropping where each 
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founder allele is uniquely labeled. The result is reported as the average absolute 

difference (aad) between the true value and the calculated estimate over all loci 

analyzed 

aad = 2^i=i l*i ~ zi\ ( 4 1 3 ) 

m 

where m is the number of loci analyzed. The conditional kinship coefficient 

estimation technique was not analyzed under allele frequency misspecification. 

Implications for Gene Mapping of Quantitative Traits 

Variance component methods are very powerful tools for mapping quantitative 

trait loci (QTL). In the standard variance component model the value of a quan­

titative trait Y for individual i is modeled as 

Yi = li + f3TZi + Ai + qi + ei (4.14) 

where \x is the population mean of the trait, Z are the environmental predictors, 

A is the polygenic effect, q is the major trait locus effect and e is the residual 

error. Ignoring dominance effects, the variance of Y is 

Var(Y) = VA + VG + VE (4.15) 

where VA is the additive genetic variance, VQ is the polygenic variance and Vg is 

the environmental variance. For non-inbred relatives i and j the trait's covariance 

is 

Cov(Yi, Yj) = 2^ijVA + 2$ijVG (4.16) 
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where $y is the conditional kinship coefficient for i and j at a map location, and 

$ij is the theoretical kinship coefficient for i and j . Algorithms 1 and 2 described 

above give you estimates for $^ and $y at every SNP on a chip. 

In order for our estimates of $jj and $y to have relevance they must be 

able to be substituted for the values calculated traditionally in the analysis of 

quantitative traits. To assess the quality and utility of the estimates produced 

we used our estimates to perform QTL mapping in the Southwest Foundation 

data set described above, which has a known QTL signal. We compared the 

results of their QTL analysis to results of analyses using our estimates for the 

coefficients. We performed two different analyses. For the first, we used the 

stated pedigree structures provided by the Southwest Foundation but used our 

methods to construct the theoretical kinship matrix for the pedigrees and the 

conditional kinship coefficient estimates at each locus on the chip for each pair in 

the pedigrees. For the second investigation, we first ran the pedigree construction 

algorithm described above with a kinship coefficient cutoff of 0.20 to construct 

'pedigrees', then calculated all the theoretical and conditional coefficients in the 

constructed pedigrees and ran the QTL analysis on this new data set. Both of 

our investigations only analyzed individuals with both genotype and phenotype 

values. 
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4.3 Results 

4.3.1 Theoretical Kinship Coefficient Estimation 

To test the characteristics and accuracy of our theoretical kinship coefficient 

estimator we performed extensive gene-dropping simulations using the Pedigree 

structure seen in Figure 4.1. For each SNP-chip analyzed (Affymetrix 10K, 100K, 

200K, 500K) we generated 500 replicates of the pedigree structure and estimated 

the theoretical kinship coefficient for all pairwise relationships in the pedigree. We 

analyzed the distribution of the estimated coefficients to determine its accuracy 

and whether the estimator is indeed an unbiased estimator. Here we are showing 

and discussing the results for eight pairs of relationships that span the spectrum 

of genetic relationships in the pedigree and give a clear answer as to the validity 

of our method. 

The first relationship analyzed is a pair of unrelated individuals. This analysis 

will allow us to determine if our estimator is unbiased and gives us the lower bound 

of the kinship coefficients we are able to accurately estimate. For the analysis of 

unrelated individuals we compared the two founders of the pedigree, individuals 1 

and 2 (Figure 4.1). Table 4.1 gives the minimum, mean and maximum calculated 

values for this pair of unrelated individuals over 500 replicates for each of the 

4 chips analyzed. As the data in the table shows, the mean value on all the 

chips is very close to zero which is the true genetic relatedness of these two 

individuals. Additionally it appears that our method is unbiased because of its 

ability to obtain both positive and negative values. To more formally test the 

results for bias we conducted the Kolmogorov-Smirnov (KS) test by comparing 

the empiric distribution of the estimated coefficients against a normal distribution 
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Chip 
10K 
100K 
200K 
500K 

True 
0 
0 
0 
0 

Min 
-0.02464 
-0.006876 
-0.004975 
-0.004236 

-2SD 
-0.015208 
-0.00540 
-0.00388 
-0.00250 

Mean 
-0.0001802 
-0.0001257 
9.059e-05 
4.285e-05 

+2SD 
0.014848 
0.00515 
0.00406 
0.00258 

Max 
0.02109 
0.008267 
0.006254 
0.004536 

SD 
0.00751 
0.00264 
0.001987 
0.00127 

Table 4.1: Individual 1 vs Individual 2 Kinship Coefficient Estimation Results by 
Chip Type. (SD = Standard Deviation) 

Chip 
10K 

100K 
200K 
500K 

D 
0.0220464 

0.02459163 
0.02233089 
0.02090449 

P-Value 
0.9682626 
0.9229316 
0.9643697 
0.981261 

Table 4.2: Individual 1 vs Individual 2 Kolmogorov-Smirnov Test of Normality 
for Kinship Coefficient Estimation Results by Chip Type. 

with mean equal to the mean of a chip's estimates and the standard deviation 

equal to the standard deviation of the estimates. The results of the KS test for 

this pair of unrelated individuals is shown in Table 4.2, and the test was unable 

to reject the null hypothesis that the values are normally distributed. Figure 4.2 

plots the histograms for this pair of individuals for the 10K (4.2A), 100K(4.2B), 

200K (4.2C) and 500K (4.2D) chips. This figure clearly illustrates the shrinking 

standard deviation and improved accuracy of our estimator as the number of 

SNPs in the calculation increases. The red vertical lines on the plots show the 

±2 standard deviation area of the distribution. When using the 500K SNP-chip it 

appears that the lower bound for our estimator for distinguishing between related 

and unrelated individuals is a kinship coefficient of approximately 0.003, which 

is about the relatedness of 3rd cousins. 
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Figure 4.2: Individual 1 vs Individual 2 Kinship Coefficient Estimation, True 
Value = 0.0: (A) 10K Chip; (B) 100K Chip; (C) 200K Chip; (D) 500K Chip. 
(The left and right red vertical lines represent the ±2 Standard Deviation area) 
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Chip 
10K 
100K 
200K 
500K 

True 
0.25 
0.25 
0.25 
0.25 

Min 
0.1793 
0.1949 
0.1976 
0.2139 

-2SD 
0.2016 
0.20920 
0.21280 
0.22050 

Mean 
0.2478 
0.2485 
0.2503 
0.2502 

+2SD 
0.2940 
0.28789 
0.28772 
0.27995 

Max 
0.3135 
0.3109 
0.2973 
0.3007 

SD 
0.02310 
0.01967 
0.01873 
0.01486 

Table 4.3: Individual 3 vs Individual 4 Kinship Coefficient Estimation Results by 
Chip Type. (SD = Standard Deviation) 

The next relationship analyzed has a theoretical kinship coefficient of 0.25, 

which is the genetic relatedness of siblings and parent-offspring pairs. To rep­

resent this level of relatedness we analyzed the sibling pair of individuals 3 and 

4 of Figure 4.1. As Table 4.3 shows the mean of the distribution of calculated 

coefficients correctly estimates the kinship coefficient for all 4 chips. As was seen 

with the unrelated pair, with increasing number of SNPs the standard deviation 

of the distribution shrinks. Figure 4.3 illustrates how with increasing number 

of SNPs analyzed the method produces a very tight distribution of coefficients 

centered on the true coefficient value. As Table 4.4 shows the distributions for 

this relatedness level cannot be rejected by the KS test as coming from a nor­

mal distribution with mean equal to the sample mean and standard deviation 

equal to the sample standard deviation. Further supporting our assertion that 

our estimator is unbiased. The results also support that this indeed is a powerful 

and robust estimator. The results for the 500K chip are very impressive with the 

minimum calculated value only 0.04 from the true value. 
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Chip 
10K 
100K 
200K 
500K 

D 
0.03096577 
0.02664091 
0.02375163 
0.02586740 

P-Value 
0.7238213 
0.8699132 
0.9405131 
0.8922024 

Table 4.4: Individual 3 vs Individual 4 Kolmogorov-Smirnov Test of Normality 
for Kinship Coefficient Estimation Results by Chip Type. 
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Figure 4.3: Individual 3 vs Individual 4 Kinship Coefficient Estimation, True 
Value = 0.25: (A) 10K Chip; (B) 100K Chip; (C) 200K Chip; (D) 500K Chip. 
(The left and right red vertical lines represent the ±2 Standard Deviation area) 
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Chip 
10K 

100K 
200K 
500K 

True 
0.125 
0.125 
0.125 
0.125 

Min 
0.08004 
0.08556 
0.09049 
0.09986 

-2SD 
0.09047 
0.09705 
0.09948 
0.10635 

Mean 
0.1236 
0.1238 
0.1249 
0.1254 

+2SD 
0.15664 
0.15047 
0.15033 
0.14442 

Max 
0.1739 
0.1594 
0.1645 
0.1519 

SD 
0.01654 
0.01335 
0.01271 
0.00952 

Table 4.5: Individual 4 vs Individual 7 Kinship Coefficient Estimation Results by 
Chip Type. (SD = Standard Deviation) 

Chip 
10K 
100K 
200K 
500K 

D 
0.01885266 
0.02859544 
0.03205186 
0.04013574 

P-Value 
0.994255 
0.8082093 
0.6832826 
0.3974943 

Table 4.6: Individual 4 vs Individual 7 Kolmogorov-Smirnov Test of Normality 
for Kinship Coefficient Estimation Results by Chip Type. 

The third relatedness level analyzed has a theoretical kinship coefficient of 

0.125, and designates individuals related at the level of uncle-niece/nephew or 

grandparent-grandchild pairs. To represent this type of relatedness we analyzed 

the individual pair 4 and 7 from Figure 4.1. The mean value of our theoretical 

kinship estimate distribution correctly estimates this level of relatedness for all 

4 chips as seen in Table 4.5. The same trend of better mean estimates and 

smaller standard deviations with increasing number of SNPs is continued here. 

Table 4.6 also shows that the distributions cannot be rejected as coming from a 

normal distribution as determined by the KS test. The reduction in the standard 

deviation of the distribution with increasing numbers of SNPs is clearly illustrated 

in Figure 4.4. The results for the 500K chip also show that there is a clear 

separation between the distributions for individuals 3 &; 4 and that for individuals 

4 & 7, shown in Figure 4.5. 
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Figure 4.4: Individual 4 vs Individual 7 Kinship Coefficient Estimation, True 
Value = 0.125: (A) 10K Chip; (B) 100K Chip; (C) 200K Chip; (D) 500K Chip. 
(The left and right red vertical lines represent the ±2 Standard Deviation area) 
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Figure 4.5: Comparison of Distributions of Kinship Estimates for 0.25 true coef­
ficient (red) and 0.125 true coefficient (blue) for the 500K Chip 
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Chip 
10K 
100K 
200K 
500K 

True 
0.0625 
0.0625 
0.0625 
0.0625 

Min 
0.006607 
0.02548 
0.01616 
0.0316 

-2SD 
0.02701 
0.03093 
0.03239 
0.03869 

Mean 
0.06214 
0.0619 
0.0623 
0.06268 

+2SD 
0.09728 
0.09288 
0.09221 
0.08667 

Max 
0.1153 
0.1109 
0.1082 

0.09739 

SD 
0.01757 
0.01549 
0.01495 
0.01200 

Table 4.7: Individual 4 vs Individual 21 Kinship Coefficient Estimation Results 
by Chip Type. (SD = Standard Deviation) 

Chip 
10K 
100K 
200K 
500K 

D 
0.03375575 
0.03792196 
0.03472519 
0.04334377 

P-Value 
0.6190896 
0.4684229 
0.5828407 
0.3045118 

Table 4.8: Individual 4 vs Individual 21 Kolmogorov-Smirnov Test of Normality 
for Kinship Coefficient Estimation Results by Chip Type. 

The fourth relationship analyzed has a theoretical kinship coefficient of 0.0625, 

and reveals relatedness of the order of a great grandparent-great grandchild pair. 

To represent this level of relatedness we analyzed the great grandparent-great 

grandchild pair of individuals 4 and 21 from Figure 4.1. The mean estimate from 

our method for all four chips is accurate to the third decimal place as seen in Table 

4.7. The standard deviation shrinks as the number of SNPs analyzed increase 

which Figure 4.6 illustrates nicely. The estimator continues to be unbiased as 

evidenced in Table 4.8 where the KS test is unable to reject the null hypothesis 

that the estimates belong to a normal distribution. For the 500K chip there is 

still a clear separation between the distribution for this relationship and the next 

highest relationship represented above for individuals 4 and 7, as seen in Figure 

4.7. 
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Kinship Coefficient 

Figure 4.6: Individual 4 vs Individual 21 Kinship Coefficient Estimation, True 
Value = 0.0625: (A) 10K Chip; (B) 100K Chip; (C) 200K Chip; (D) 500K Chip. 
(The left and right red vertical lines represent the ±2 Standard Deviation area) 
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Figure 4.7: Comparison of Distributions of Kinship Estimates for 0.125 true 
coefficient (red) and 0.0625 true coefficient (blue) for the 500K Chip 
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Chip 
10K 
100K 
200K 
500K 

True 
0.03125 
0.03125 
0.03125 
0.03125 

Min 
-0.0003526 

0.00413 
0.009827 
0.01424 

-2SD 
0.00660 
0.01153 
0.01293 
0.01698 

Mean 
0.03154 
0.03113 
0.03073 
0.03127 

+2SD 
0.05648 
0.05073 
0.04854 
0.04556 

Max 
0.07819 
0.06088 
0.06285 
0.05073 

SD 
0.01247 
0.00980 
0.00890 
0.00715 

Table 4.9: Individual 4 vs Individual 19 Kinship Coefficient Estimation Results 
by Chip Type. (SD = Standard Deviation) 

Chip 
10K 
100K 
200K 
500K 

D 
0.03656664 
0.04312246 
0.04747099 
0.03630494 

P-Value 
0.5157035 
0.3103269 
0.2098196 
0.5263683 

Table 4.10: Individual 4 vs Individual 19 Kolmogorov-Smirnov Test of Normality 
for Kinship Coefficient Estimation Results by Chip Type. 

The fifth relationship analyzed has a theoretical kinship coefficient of 0.03125, 

and represents relatedness on the order of one's self to one's great-grandparent's 

sibling. We analyzed the pair of individuals 4 and 19 from the pedigree in Figure 

4.1 to represent this level of relatedness (highlighted in Figure 4.1). The mean 

estimate from the distribution generated by the method is still accurate out to 

the third decimal place for this distant level of relatedness, as seen in Table 4.9. 

The mean value for the 500K chip is almost exactly at the true value of 0.03125, 

and has a very small standard deviation. The KS test results seen in Table 

4.10 still fails to reject that the estimates from our method are drawn from a 

normal distribution. Figure 4.8 illustrates the need for a large number of SNPs 

when estimating coefficients this small. Figure 4.9 shows that the tails of the 

distribution for this level of relatedness and the previous example (individuals 4 

& 21) start to overlap, but data in Tables 4.7 and 4.9 show that the ±2 standard 

deviation areas of the two distributions are non-overlapping. 
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Kinship Coefficient 

Figure 4.8: Individual 4 vs Individual 19 Kinship Coefficient Estimation, True 
Value = 0.03125: (A) 10K Chip; (B) 100K Chip; (C) 200K Chip; (D) 500K Chip. 
(The left and right red vertical lines represent the ±2 Standard Deviation area) 
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Figure 4.9: Comparison of Distributions of Kinship Estimates for 0.0625 true 
coefficient (red) and 0.03125 true coefficient (blue) for the 500K Chip 

99 



www.manaraa.com

Chip 
10K 
100K 
200K 
500K 

True 
0.015625 
0.015625 
0.015625 
0.015625 

Min Value 
-0.01541 

0.00005471 
0.00165 
0.002539 

-2SD 
-0.00505 
0.00263 
0.00349 
0.00631 

Mean 
0.01503 
0.01559 
0.01515 
0.01579 

+2SD 
0.03512 
0.02855 
0.02681 
0.02527 

Max 
0.04567 
0.04016 
0.03488 
0.03324 

SD 
0.01004 
0.00648 
0.00583 
0.00474 

Table 4.11: Individual 7 vs Individual 21 Kinship Coefficient Estimation Results 
by Chip Type. (SD = Standard Deviation) 

The sixth level of relatedness analyzed has a theoretical kinship coefficient of 

0.015625, and represents the relationship from one's self to one's grandparent's 

cousin. The individual pair of 7 and 21 represent this level of relatedness in the 

pedigree in Figure 4.1. As the relationships become more and more distant, the 

more important a large number of SNPs becomes for accurate estimation, as can 

be seen in Table 4.11 and Figure 4.10. Although the mean estimate for all 4 chips 

is accurate to the third decimal place, the standard deviation for the 10K chip 

is quite large with the -2 standard deviation area covering negative coefficients, 

which overlaps with the estimate for unrelated pairs. But our method continues to 

be unbiased with the KS test unable to reject that the coefficients are drawn from 

a normal distribution for all 4 chips seen in Table 4.12. The 500K chip clearly 

performs the best as Figure 4.10 illustrates. For the 500K chip the distribution 

for this relationship and the previous one (individual pair 4 & 19) show clear 

overlap, with the +2 SD area of this distribution overlapping with the -2 SD area 

of the previous distribution as seen in Figure 4.11. However, when considering 

the 500K chip, the distribution for this relationship shows a separation between 

it and the distribution for the unrelated pair analyzed above (individuals 1 & 2) 

as seen in Figure 4.12. 
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Figure 4.10: Individual 7 vs Individual 21 Kinship Coefficient Estimation, True 
Value = 0.015625: (A) 10K Chip; (B) 100K Chip; (C) 200K Chip; (D) 500K 
Chip. (The left and right red vertical lines represent the ±2 Standard Deviation 
area) 
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Chip 
10K 

100K 
200K 
500K 

D 
0.04249858 
0.04110611 
0.03798183 
0.04268127 

P-Value 
0.3271328 
0.3668298 
0.4663846 
0.3221485 

Table 4.12: Individual 7 vs Individual 21 Kolmogorov-Smirnov Test of Normality 
for Kinship Coefficient Estimation Results by Chip Type. 
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Figure 4.11: Comparison of Distributions of Kinship Estimates for 0.03125 true 
coefficient (red) and 0.015625 true coefficient (blue) for the 500K Chip 
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Figure 4.12: Comparison of Distributions of Kinship Estimates for 0 true coeffi­
cient (red) and 0.015625 true coefficient (blue) for the 500K Chip 
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Chip 
10K 

100K 
200K 
500K 

True 
0.0078125 
0.0078125 
0.0078125 
0.0078125 

Min 
-0.01725 

-0.003156 
-0.003564 
0.0004696 

-2SD 
-0.01032 
-0.00218 
-0.00119 
0.00109 

Mean 
0.007738 
0.007441 
0.007413 
0.007839 

+2 SD 
0.02580 
0.01706 
0.01602 
0.01458 

Max 
0.03445 
0.0229 
0.02254 
0.02185 

SD 
0.00903 
0.00481 
0.00430 
0.00337 

Table 4.13: Individual 14 vs Individual 21 Kinship Coefficient Estimation Results 
by Chip Type. (SD = Standard Deviation) 

The seventh level of relatedness analyzed has a theoretical kinship coefficient 

of 0.0078125, which is a very distant relationship illustrated by the individual 

pair 14 & 21 in the pedigree in Figure 4.1. Even at this very distant genetic 

relatedness, the mean estimate from our method is accurate to the third decimal 

place for all 4 chips as seen in Table 4.13. In fact the 500K chip is still performing 

so well that its mean estimate is accurate to the 4th decimal place. The tight 

distribution for the 500K chip and its clear outperformance of the other chips is 

illustrated in Figure 4.13. The method remains normally distributed according to 

the KS test results shown in Table 4.14. As the data in Tables 4.11 and 4.13 show 

there is clear overlap in the distributions between this level of relatedness and 

the distribution for individuals 7 & 21. This level of relatedness is also starting 

to approach the lower bound of our method's ability to distinguish related from 

unrelated individuals even in the 500K chip. Figure 4.14 shows that there is 

overlap between this distribution and the distribution of estimates for unrelated 

individuals 1 & 2 when using the 500K chip, and in fact Tables 4.13 and 4.1 

show that the -2 SD area of this distribution overlaps with the +2 SD area of the 

unrelated distribution. 
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Figure 4.13: Individual 14 vs Individual 21 Kinship Coefficient Estimation, True 
Value = 0.0078125: (A) 10K Chip; (B) 100K Chip; (C) 200K Chip; (D) 500K 
Chip. (The left and right red vertical lines represent the ±2 Standard Deviation 
area) 
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Chip 
10K 
100K 
200K 
500K 

D 
0.02704439 
0.05384713 
0.03973323 
0.03955475 

P-Value 
0.8579572 
0.1100817 
0.4088592 
0.4145268 

Table 4.14: Individual 14 vs Individual 21 Kolmogorov-Smirnov Test of Normality 
for Kinship Coefficient Estimation Results by Chip Type. 
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Figure 4.14: Comparison of Distributions of Kinship Estimates for 0 true coeffi­
cient (red) and 0.0078125 true coefficient (blue) for the 500K Chip 
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Chip 
10K 
100K 
200K 
500K 

True 
0.003906 
0.003906 
0.003906 
0.003906 

Min 
-0.0174 
-0.00649 

-0.004102 
-0.002393 

-2SD 
-0.01219 
-0.00414 
-0.00301 
-0.00113 

Mean 
0.003557 
0.00377 
0.003731 
0.004023 

+2SD 
0.01930 
0.01168 
0.01047 
0.00917 

Max 
0.03047 
0.02326 
0.01785 
0.01542 

SD 
0.00787 
0.00396 
0.00337 
0.00257 

Table 4.15: Individual 19 vs Individual 21 Kinship Coefficient Estimation Results 
by Chip Type. (SD = Standard Deviation) 

Chip 
10K 
100K 
200K 
500K 

D 
0.03491145 
0.03793606 
0.06698928 
0.05490507 

P-Value 
0.5759316 
0.4679426 

0.02249599 
0.0987158 

Table 4.16: Individual 19 vs Individual 21 Kolmogorov-Smirnov Test of Normality 
for Kinship Coefficient Estimation Results by Chip Type. 

The eighth and final level of relatedness analyzed has a kinship coefficient of 

0.003906, a very distant relationship illustrated by individuals 19 & 21 in the 

pedigree in Figure 4.1. Even for this very distantly related pair, the method still 

performs quite well as shown in Table 4.15. Figure 4.15 illustrates that to detect 

this distant of a relationship with our method that the 500K chip is necessary. 

But even with the 500K chip Figure 4.14 and Tables 4.15 and 4.1 demonstrates 

that there is significant overlap between the distribution for this pair and the 

distribution of coefficients for the unrelated pair 1 & 2. The unbiased nature of 

our statistic is upheld with the KS test being unable to reject that the coefficients 

are drawn from a normal distribution, except for the 200K chip if you use a p-value 

cutoff of 0.05. Figure 4.15 shows that the reason for this might be the extended 

right tail of the distribution, but this could just be an artifact of sampling. 
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Figure 4.15: Individual 19 vs Individual 21 Kinship Coefficient Estimation, True 
Value = 0.003906: (A) 10K Chip; (B) 100K Chip; (C) 200K Chip; (D) 500K 
Chip. (The left and right red vertical lines represent the ±2 Standard Deviation 
area) 
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Figure 4.16: Comparison of Distributions of Kinship Estimates for 0 true coeffi­
cient (red) and 0.003906 true coefficient (blue) for the 500K Chip 
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The above results show that with correctly specified allele frequencies our 

estimator performs very well. But the formulation of our method is heavily 

dependent on the specified allele frequencies. To assess how allele frequency mis-

specification affects our methods performance we conducted extensive simulation 

studies, as detailed in the materials and methods section. We are only going to 

show and discuss the results for a single relationship pair because the affect on the 

methods performance is the same no matter the relationship investigated. For 

the purpose of discussing allele frequency misspecification we will be discussing 

individual pair 4 & 7, who have a theoretical kinship coefficient of 0.125. 

The first analysis was to determine the behavior of our kinship estimates when 

the analysis major allele frequencies are greater than the actual major allele fre­

quencies. Table 4.17 shows the results when the major allele frequencies used in 

the analysis of the data are 1% greater than the major allele frequencies used to 

generate the data at 25% of the loci on a chip. This allele frequency misspecifica­

tion shifts the mean of the distribution to underestimate the level of relatedness, 

but does not affect the size of the standard deviation of the distribution as can be 

seen by comparison with Table 4.5. The next analysis was to have the analysis 

major allele frequency greater than the actual major allele frequency by 1% at 

50% of the loci on the chip. The results of this analysis are shown in Table 4.18 

and show a further downward shift in the mean of the distribution without affect­

ing the standard deviation. Finally, we set the analysis major allele frequencies 

greater than the actual major allele frequencies by 1% at 100% of the loci. The 

results of this analysis are shown in Table 4.19 and reveal a very dramatic down­

ward shift in the mean kinship coefficient estimate without affecting the structure 

of the distribution. These results are exactly what would be expected from an 
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Chip 
10K 
100K 
200K 
500K 

True 
0.125 
0.125 
0.125 
0.125 

Min 
0.07307 
0.07577 
0.08326 
0.09157 

-2SD 
0.08492 
0.08838 
0.09202 
0.09660 

Mean 
0.11819 
0.11538 
0.11769 
0.11676 

+2SD 
0.15145 
0.14238 
0.14335 
0.13690 

Max 
0.16682 
0.15171 
0.15699 
0.14299 

SD 
0.0166 
0.0135 
0.0128 
0.0101 

Table 4.17: Individual 4 vs Individual 7 Kinship Coefficient Estimation Results 
by Chip Type; Analysis major allele frequency > Simulated by 1 percent at 25 
percent of the loci 

Chip 
10K 
100K 
200K 
500K 

True 
0.125 
0.125 
0.125 
0.125 

Min 
0.06583 
0.06730 
0.07336 
0.08276 

-2SD 
0.07941 
0.07975 
0.08132 
0.08951 

Mean 
0.11291 
0.10705 
0.10860 
0.10896 

+2SD 
0.14639 
0.13433 
0.13588 
0.12840 

Max 
0.16256 
0.14345 
0.14757 
0.13583 

SD 
0.0167 
0.0136 
0.0136 
0.0097 

Table 4.18: Individual 4 vs Individual 7 Kinship Coefficient Estimation Results 
by Chip Type; Analysis major allele frequency > Simulated by 1 percent at 50 
percent of the loci 

analysis of equation 4.5 used in the calculation. As the major allele frequency 

increases so does the second term in the numerator and denominator which is the 

sum of the squares of all the allele frequencies. This term down weights the ob­

served number of IBS matches because more are expected and therefore reduces 

the estimate of the relatedness. 

The second analysis was to determine the behavior of our kinship estimates 

when the analysis major allele frequencies are less than the actual major allele 

Chip 
10K 
100K 
200K 
500K 

True 
0.125 
0.125 
0.125 
0.125 

Min 
0.05546 
0.05016 
0.05290 
0.06579 

-2SD 
0.06875 
0.06269 
0.06217 
0.07273 

Mean 
0.10234 
0.09038 
0.08871 
0.09246 

+2SD 
0.13592 
0.11806 
0.11525 
0.11218 

Max 
0.15205 
0.12668 
0.12973 
0.11968 

SD 
0.0168 
0.0138 
0.0133 
0.0099 

Table 4.19: Individual 4 vs Individual 7 Kinship Coefficient Estimation Results 
by Chip Type; Analysis major allele frequency > Simulated by 1 percent at All 
of the loci 
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Chip 
10K 
100K 
200K 
500K 

True 
0.125 
0.125 
0.125 
0.125 

Min 
0.08557 
0.09296 
0.10158 
0.10885 

-2SD 
0.09628 
0.10562 
0.11003 
0.11561 

Mean 
0.12910 
0.13221 
0.13517 
0.13398 

+2 SD 
0.16192 
0.15879 
0.16031 
0.15234 

Max 
0.17917 
0.16888 
0.17376 
0.16069 

SD 
0.0164 
0.0133 
0.0126 
0.0092 

Table 4.20: Individual 4 vs Individual 7 Kinship Coefficient Estimation Results 
by Chip Type; Analysis major allele frequency < Simulated by 1 percent at 25 
percent of the loci 

frequencies. Based upon the results of the above analyses and the analysis of 

the equation used to estimate the kinship coefficient, we expect that this analysis 

will show an upward shift in the mean of the distribution and inflation of the 

estimated relatedness. The logic is that the decreased major allele frequency 

will decrease the sum of the squares of the allele frequencies and up weights the 

observed number of IBS matches and inflate the estimate of relatedness. Table 

4.20 shows the results when 25% of the loci on a chip have the analysis major 

allele frequency 1% less than the actual major allele frequency. The table does 

in fact show an upward shift in the mean of the distribution with no affect on 

the standard deviation. The same upward shift in the mean of the distribution 

is observed when 50% (Table 4.21) and 100% (Table 4.22) of the loci on the chip 

have the analysis major allele frequency less than the actual major allele frequency 

by 1%. The method behaves in a predictable manner in terms of the affects on 

the mean of the distribution of kinship estimates when the allele frequencies are 

uniformly misspecified. But we do not believe that these examples simulate the 

types of allele frequency misspecification that would occur in real data. 

To analyze the performance of the method in a more realistic setting we set 

a normally distributed error distribution on the major allele for each locus. This 

situation will result in having a mixture of loci allele misspecification. Tables 
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Chip 
10K 
100K 
200K 
500K 

True 
0.125 
0.125 
0.125 
0.125 

Min 
0.09111 
0.10183 
0.10987 
0.11749 

-2SD 
0.10207 
0.11429 
0.11811 
0.12370 

Mean 
0.13455 
0.14062 
0.14304 
0.14239 

+2SD 
0.16703 
0.16694 
0.16796 
0.16107 

Max 
0.18386 
0.17743 
0.18073 
0.16882 

SD 
0.0162 
0.0134 
0.0125 
0.0093 

Table 4.21: Individual 4 vs Individual 7 Kinship Coefficient Estimation Results 
by Chip Type; Analysis major allele frequency < Simulated by 1 percent at 50 
percent of the loci 

Chip 
10K 
100K 
200K 
500K 

True 
0.125 
0.125 
0.125 
0.125 

Min Value 
0.10035 
0.11842 
0.12660 
0.13515 

-2SD 
0.11351 
0.13170 
0.13430 
0.14116 

Mean 
0.14562 
0.15752 
0.15878 
0.15946 

+2SD 
0.17772 
0.18334 
0.18326 
0.17776 

Max 
0.19480 
0.19294 
0.19586 
0.18546 

SD 
0.0161 
0.0129 
0.0122 
0.0092 

Table 4.22: Individual 4 vs Individual 7 Kinship Coefficient Estimation Results 
by Chip Type; Analysis major allele frequency < Simulated by 1 percent at All 
of the loci 

4.23, 4.24, 4.25 and 4.26 shows the affects on the kinship estimates from setting 

the standard deviation of the error distribution for each locus to (0.025 x major 

allele frequency), (0.05xmajor allele frequency), (0.075xmajor allele frequency) 

and (0.10 x major allele frequency) respectively. The expectation is that for each 

analysis approximately half the loci will have the analysis major allele frequency 

greater than the actual allele frequency and that approximately half the loci will 

have the analysis major allele frequency less than the actual allele frequency. 

This was not actually the case. Although the skewness was not dramatic, in all 

the analyses the were more loci where the analysis major allele frequency was 

greater than the actual allele frequency, and this fact accounts for the mean of 

the coefficient distribution being shift towards underestimating the relatedness of 

the individuals in all the analyses. The reason for this bias is that the SNPs on 

the chips are biased towards loci with large major allele frequencies and in our 
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Chip 
10K 

100K 
200K 
500K 

True 
0.125 
0.125 
0.125 
0.125 

Min 
0.07805 
0.07925 
0.06907 
0.09810 

-2SD 
0.09096 
0.09238 
0.07950 
0.10513 

Mean 
0.12367 
0.11934 
0.10539 
0.12412 

+2SD 
0.15637 
0.14628 
0.13127 
0.14313 

Max 
0.17435 
0.15470 
0.14538 
0.15066 

SD 
0.0163 
0.0135 
0.0129 
0.0095 

Table 4.23: Individual 4 vs Individual 7 Kinship Coefficient Estimation Results 
by Chip Type; 2.5 percent standard deviation in distribution of major allele 
frequency misspecification 

Chip 
10K 
100K 
200K 
500K 

True 
0.125 
0.125 
0.125 
0.125 

Min 
0.07151 
0.06598 
0.04417 
0.08877 

-2SD 
0.08962 
0.08119 
0.05395 
0.09485 

Mean 
0.12245 
0.10846 
0.08013 
0.11412 

+2SD 
0.15527 
0.13572 
0.10631 
0.13284 

Max 
0.17236 
0.14514 
0.11409 
0.14232 

SD 
0.0164 
0.0136 
0.0131 
0.0096 

Table 4.24: Individual 4 vs Individual 7 Kinship Coefficient Estimation Results by 
Chip Type; 5 percent standard deviation in distribution of major allele frequency 
misspecification 

sampling we had to reject allele frequencies > 1, therefore for the loci with very 

large major allele frequencies the probability of sampling frequency larger than 

the actual allele frequency and < 1 was very small. An interesting observation 

is that the 10K and 500K chips appear to be more robust against allele misspec-

ifications than the 100K and 200K chip. We are not sure why, but might have 

something to due with the criteria Affymetrix employed in selecting the SNPs to 

include on their chips. 

Chip 
10K 
100K 
200K 
500K 

True 
0.125 
0.125 
0.125 
0.125 

Min 
0.07009 
0.05182 
0.01709 
0.07242 

-2SD 
0.08464 
0.06487 
0.02645 
0.07937 

Mean 
0.11745 
0.09264 
0.05385 
0.09881 

+2SD 
0.15025 
0..1204 
0.08123 
0.11825 

Max 
0.16682 
0.12901 
0.09608 
0.12637 

SD 
0.0164 
0.0139 
0.01379 
0.0097 

Table 4.25: Individual 4 vs Individual 7 Kinship Coefficient Estimation Results 
by Chip Type; 7.5 percent standard deviation in distribution of major allele 
frequency misspecification 
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Chip 
10K 
100K 
200K 
500K 

True 
0.125 
0.125 
0.125 
0.125 

Min 
0.06697 
0.03205 
-0.01301 
0.05347 

-2SD 
0.08416 
0.04576 
-0.00294 
0.06081 

Mean 
0.11711 
0.07400 
0.02523 
0.08077 

+2SD 
0.15005 
0.10222 
0.05339 
0.10073 

Max 
0.16554 
0.11135 
0.06977 
0.10837 

SD 
0.0165 
0.0141 
0.0141 
0.001 

Table 4.26: Individual 4 vs Individual 7 Kinship Coefficient Estimation Results by 
Chip Type; 10 percent standard deviation in distribution of major allele frequency 
misspecification 

These analyses of our methods performance under allele frequency misspec­

ification are important to note and understand. They suggest that much effort 

should be employed to ensure the correct estimation of the allele frequencies for 

any population being analyzed by this method. The results are also not sur­

prising given that the allele frequencies play an important role in our estimation 

technique. 

4.3.2 Conditional Kinship Coefficient Estimation 

The penalized optimization technique we propose for estimating the conditional 

kinship coefficient for each SNP on a chip has two penalty terms, X\ and A2. The 

Ai parameter is to penalize the point estimate at a SNP for being different than 

the chromosome specific theoretical kinship coefficient. The A2 parameter is to 

penalize neighboring SNPs for belonging to different conditional kinship coeffi­

cient sets. The first step for our method is to find the optimal Ai, A2 combination 

that minimizes the error between the true conditional kinship coefficient and our 

estimated conditional kinship coefficient in a variety of IBD sharing configura­

tions and relationships. We chose four relationships from the pedigree structure 

(Figure 4.1) that represented a wide range of relationships and would exhibit 
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complex patterns of IBD sharing along the chromosomes. For each of these re­

lationships we analyzed the first 100 replicates of the 500 replicates analyzed 

for the theoretical kinship estimation above, and performed a grid search of all 

combinations of Ai and A2 for Ai from 0-2 in increments of 0.2 and for A2 from 

0 - 110 in increments of 5. For each replicate, for each SNP, for each pair of Ai 

and A2, we compared our estimated conditional coefficient to the true conditional 

coefficient. The true conditional coefficient was determined by performing gene-

dropping in the program Mendel with its option to uniquely label all founder 

alleles so IBD sharing can be calculated exactly. For each replicate we calculated 

the average absolute difference (aad) for a chromosome as defined by equation 

4.13. We wanted to find the A1; A2 combination that minimized the aad over 

the 100 replicates. We chose to use chromosome 21 of the 200K chip to perform 

the grid search to find the optimal Ai, A2 combination. The 4 relationships we 

tested were individual pairs 3 & 4 , 4 & 7 , 4 & 1 9 and 19 & 21. The hope was to 

find a single Ai, A2 combination that works well across all relationships and all 

chromosomes. 

The results of the grid search for the sibling pair 3 & 4 can be seen in Figure 

4.17. The Ai, A2 combination that gave the minimum aad for this pair was Ai 

equal to 0 and A2 equal to 90, and designated by a red diamond in the figure. 

The optimal Ai, A2 combination that gave the minimum aad for the individual 

pair 4 &; 7 was Ai equal to 0.2 and A2 equal to 110 designated by a red diamond 

in Figure 4.18. The minimum aad for individual pair 4 & 19 occurred at Ai 

equal to 0 and A2 equal to 100 designated by a red diamond in Figure 4.19. The 

final pair analyzed, individuals 19 k, 21, found the minimum aad with Ax equal 

to 0.6 and A2 equal to 90, designated by a red diamond in Figure 4.20. The 
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optimal Ai, A2 combination for all pairs are all very close. In order to simplify 

the calculation and increase the generality of the technique we would like a single 

Ai, A2 combination. Therefore we decided to test to see if we used the optimal 

Ai, A2 combination for individual pair 4 & 19 (X\ = 0, A2 = 100) for all pairs 

would the results be significantly different than if we used the true optimal Ai, 

A2 for each pair. The average aad across the 100 replicates for the pairs 3 & 4, 

4 & 7, and 19 & 21 using the combination Ai = 0, A2 = 100 is shown by a blue 

open circle on Figures 4.17, 4.18 and 4.20 respectively. 

119 



www.manaraa.com

Figure 4.17: Optimization of Ai and A2 penalties for conditional kinship coefficient 
estimation for individual pair 3 & 4 (theoretical kinship coefficient = 0.25) for 
Chr 21 on the 200K chip, 100 replicates. (Red diamond true minimum, Blue 
circle generalized penalties) 
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Figure 4.18: Optimization of Aj and A2 penalties for conditional kinship coefficient 
estimation for individual pair 4 & 7 (theoretical kinship coefficient = 0.125) for 
200K chip, 100 replicates. (Red diamond true minimum, Blue circle generalized 
penalties) 
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Figure 4.19: Optimization of Ai and A2 penalties for conditional kinship coefficient 
estimation for individual pair 4 & 19 (theoretical kinship coefficient = 0.03125) for 
200K chip, 100 replicates. (Red diamond true minimum, Blue circle generalized 
penalties) 
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Figure 4.20: Optimization of Ai and A2 penalties for conditional kinship coef­
ficient estimation for individual pair 19 & 21 (theoretical kinship coefficient = 
0.003906) for 200K chip, 100 replicates. (Red diamond true minimum, Blue circle 
generalized penalties) 
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Figure 4.21 compares the distribution of the aad over 500 replicates for the 

pair 3 & 4 using the true optimal lambdas (Figure 4.21A) and using the gen­

eralize lambdas (Figure 4.21B). As the figure shows, there is not a significant 

difference in the distribution of error between the two sets of lambdas. The mean 

of the distribution using the optimal lambda combination is 0.0076, while the 

mean with the generalized lambdas is 0.0080. Additionally, the two lambda sets 

both achieve zero error in 19 replicates and both have the same maximum error of 

0.04034. Therefore we conclude that there is not a significant difference between 

the results using the optimal vs the generalized lambdas, and will use the gener­

alized lambdas for all our analyses. Next we analyzed the individual pair 4 & 7 

to determine if the proposed generalized lambda combination yields significantly 

different results from the optimal lambda combination. Figure 4.22 compares 

the distribution of aad for 500 replicates using the optimal lambda combination 

(4.22A) and the generalized combination (4.22B). The mean of the distribution 

using the optimal lambda combination is 0.003388 while the mean of using the 

generalized lambdas is 0.003397. The minimum and maximums of the distribu­

tions are also very similar leading us to conclude that the generalized lambdas 

do not give significantly different results from the optimal lambda combination. 

Finally we needed to determine if the generalized lambda combination will work 

for the most distantly related pair, individuals 19 & 21. The comparison of the 

distribution of aad for 500 replicates on chromosome 21 of the 200K chip is seen 

in Figure 4.23, and it reveals that the two distributions are virtually identical. 

Therefore we are going to use the generalized lambda combination for all future 

analysis. 

The results from these analyses show that we can use a single Ai, A2 combina-
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Figure 4.21: Comparison of Distribution of Average Absolute Difference (aad) of 
the conditional kinship coefficient estimation for individual pair 3 k, 4 (theoretical 
kinship coefficient = 0.25) for Chr 21 on the 200K chip, 500 replicates. (A) True 
Minimum \x, A2 (B) Generalized A1; A2. Red dotted line is at mean of distribution. 

tion for estimating the conditional kinship coefficient for the entire spectrum of 

theoretical kinship coefficients that we can confidently estimate. The next step 

is to test the accuracy of our estimator on the 10K, 100K and 500K chips while 

employing the coefficients we optimized for the 200K chip. 
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Figure 4.22: Comparison of Distribution of Average Absolute Difference (aad) of 
the conditional kinship coefficient estimation for individual pair 4 & 7 (theoretical 
kinship coefficient = 0.125) for Chr 21 on the 200K chip, 500 replicates. (A) True 
Minimum Ai, A2 (B) Generalized Ai, A2. Red dotted line is at mean of distribution. 
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Figure 4.23: Comparison of Distribution of Average Absolute Difference (aad) of 
the conditional kinship coefficient estimation for individual pair 4 & 19 (theoret­
ical kinship coefficient = 0.003906) for Chr 21 on the 200K chip, 500 replicates. 
(A) True Minimum Ai,A2 (B) Generalized Ai,A2- Red dotted line is at mean of 
distribution. 
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Figure 4.24 shows the distribution of the aad over 500 replicates for individual 

pair 3 & 4 using the generalized lambdas for chromosome 21 for the 10K (4.24A), 

100K (4.24B), 200K (4.24C) and 500K (4.24D). As the distributions reveal, the 

estimation of the conditional kinship coefficient is best using the 500K chip. 

Figure 4.25 shows a conditional kinship coefficient plot for all 7,143 SNPs on 

chromosome 21 on the 500K chip for the replicate with approximately the mean 

aad of the distribution shown in Figure 4.24D. As the figure reveals we do an 

extremely good job of estimation, and only assign 12 of the 7,143 SNPs incorrect 

conditional kinship coefficients. Figure 4.26 shows the distribution of aad on 

chromosome 21 for individual pair 4 & 7 for the 10K (4.26A), 100K (4.26B), 

200K (4.26C) and 500K (4.26D) chips. The 500K chip performs the best and 

Figure 4.27 shows the conditional kinship coefficient plot for the 7,143 SNPs on 

chromosome 21 on the chip for a replicate with approximately the mean aad. Our 

estimation method works well and only incorrectly assigns 58 SNPs to the wrong 

IBD set. The distribution of aad for individual pair 4 & 19 for 500 replicates 

on chromosome 21 for the 4 chips is found in Figure 4.28. The figure shows 

that all 4 chips are performing well, but that the 500K chip still outperforms the 

rest of the chips. The comparison of the true and estimated conditional kinship 

coefficients for the replicate with approximately the mean aad is seen in Figure 

4.28, and shows that the method only misassigns 29 of the 7,143 SNPs. Figure 

4.30 shows how this lambda combination performs at estimating the conditional 

kinship coefficient for individual pair 19 & 21 on all 4 chips. The 500K chip 

performs the best and Figure 4.31 show the coefficient plot for a replicate with 

approximately the mean aad and shows that only 7 of the 7,143 SNPs were 

misassigned IBD status. 
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Average Absolute Difference 

Figure 4.24: Distribution of Average Absolute Difference of the conditional kin­
ship coefficient estimation for individual pair 3 & 4 (theoretical kinship coefficient 
= 0.25) for Chr 21, 500 replicates: (A) 10K chip, (B) 100K chip, (C) 200K chip, 
(D) 500K chip. Red dotted line is at mean of distribution 
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Figure 4.25: Comparison between True Conditional Kinship Coefficient and Esti­
mated Conditional Kinship Coefficient for replicate with mean Average Absolute 
Difference for individual pair 3 & 4 (theoretical kinship coefficient = 0.25) 500K 
chip, Chr 21. A locus has a black box when the estimated value and the true 
value are identical. For loci where the estimate is different than the true value, 
the estimated value is a blue dot and the true value is a red dot. 
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Figure 4.26: Distribution of Average Absolute Difference of the conditional kin­
ship coefficient estimation for individual pair 4 & 7 (theoretical kinship coefficient 
= 0.125) for Chr 21, 500 replicates: (A) 10K chip, (B) 100K chip, (C) 200K chip, 
(D) 500K chip. Red dotted line is at mean of distribution 
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Figure 4.27: Comparison between True Conditional Kinship Coefficient and Esti­
mated Conditional Kinship Coefficient for replicate with mean Average Absolute 
Difference for individual pair 4 k, 7 (theoretical kinship coefficient = 0.125) 500K 
chip, Chr 21. A locus has a black box when the estimated value and the true 
value are identical. For loci where the estimate is different than the true value, 
the estimated value is a blue dot and the true value is a red dot. 
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Figure 4.28: Distribution of Average Absolute Difference of the conditional kin­
ship coefficient estimation for individual pair 4 & 19 (theoretical kinship coeffi­
cient = 0.03125) for Chr 21, 500 replicates: (A) 10K chip, (B) 100K chip, (C) 
200K chip, (D) 500K chip. Red dotted line is at mean of distribution 
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Figure 4.29: Comparison between True Conditional Kinship Coefficient and Esti­
mated Conditional Kinship Coefficient for replicate with mean Average Absolute 
Difference for individual pair 4 & 19 (theoretical kinship coefficient = 0.03125) 
500K chip, Chr 21. A locus has a black box when the estimated value and the 
true value are identical. For loci where the estimate is different than the true 
value, the estimated value is a blue dot and the true value is a red dot. 
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Figure 4.30: Distribution of Average Absolute Difference of the conditional kin­
ship coefficient estimation for individual pair 19 & 21 (theoretical kinship coeffi­
cient = 0.003906) for Chr 21, 500 replicates: (A) 10K chip, (B) 100K chip, (C) 
200K chip, (D) 500K chip. Red dotted line is at mean of distribution. 
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Figure 4.31: Comparison between True Conditional Kinship Coefficient and Esti­
mated Conditional Kinship Coefficient for replicate with mean Average Absolute 
Difference for individual pair 19 k, 21 (theoretical kinship coefficient = 0.003906) 
500K chip, Chr 21. A locus has a black box when the estimated value and the 
true value are identical. For loci where the estimate is different than the true 
value, the estimated value is a blue dot and the true value is a red dot. 
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We have demonstrated that our conditional kinship coefficient estimator using 

the generalized Ai, A2 combination optimized on the 200K chip for chromosome 

21 works well for estimating the conditional coefficients on chromosome 21 on the 

100K, 200K and 500K chips. We now need to demonstrate that the generalized 

Ai, A2 combination optimized for chromosome 21 is applicable genome wide. 

Additionally, chromosome 21 is one of the smallest chromosomes so we need 

to illustrate how our method performs on the large chromosomes. We answered 

both of these questions by using the generalized Ai, A2 combination and analyzing 

chromosome 1 (one of the largest chromosomes) for the same individual pairs as 

above. 

Figure 4.32 shows the distribution of aad for 500 replicates for individual 

pair 3 & 4 on chromosome 1 using the generalized lambdas for the 10K (4.32A), 

100K (4.32B), 200K (4.32C) and 500K (4.32D) chips. The 500K chip again 

performs the best, and Figure 4.33 shows a conditional kinship coefficient plot 

for all 40,326 SNPs on chromosome 1 on the 500K chip for a replicate with 

approximately the mean aad. This figure shows the ability of our method to 

capture very complicated IBD patterns, and in fact we only misassigned 506 of 

the 40,326 SNPs to the incorrect IBD set. The performance of our method on 

chromosome 1 for individual pair 4 & 7 for the four chip types can be seen in 

Figure 4.34. The conditional kinship plot for a replicate with approximately the 

mean error for the 500K chip is in Figure 4.35, and shows that only 249 of the 

40,326 SNPs were assigned to the incorrect IBD set. The distribution of aad for 

individual pair 4 &; 19 for chromosome 1 for the four chips is found in Figure 

4.36, which shows that the 500K chip is outperforming the other chips for this 

relationship as well. The conditional kinship coefficient plot for the replicate with 
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approximately the mean error for the 500K chip is seen in Figure 4.37, and for 

this replicate the method only misassigned 127 of the 40,326 SNPs. Figure 4.38 

shows the distribution of aad for individual pair 19 & 21 for chromosome 1 from 

the four chips and reveals that the 500K chip performs the best. Figure 4.39 is 

the coefficient plot for the replicate with approximately the mean aad and shows 

that only 36 of the 40,326 SNPs were misassigned. 

138 



www.manaraa.com

(A) 

Aveitage Absolute Difference 

(B) 

(C) 

(D) 

Figure 4.32: Distribution of Average Absolute Difference of the conditional kin­
ship coefficient estimation for individual pair 3 & 4 (theoretical kinship coefficient 
= 0.25) for Chr 1, 500 replicates: (A) 10K chip, (B) 100K chip, (C) 200K chip, 
(D) 500K chip. Red dotted line is at mean of distribution. 
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Figure 4.33: Comparison between True Conditional Kinship Coefficient and Esti­
mated Conditional Kinship Coefficient for replicate with mean Average Absolute 
Difference for individual pair 3 & 4 (theoretical kinship coefficient = 0.25) 500K 
chip, Chr 1. A locus has a black box when the estimated value and the true value 
are identical. For loci where the estimate is different than the true value, the 
estimated value is a blue dot and the true value is a red dot. 
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Figure 4.34: Distribution of Average Absolute Difference of the conditional kin­
ship coefficient estimation for individual pair 4 &; 7 (theoretical kinship coefficient 
= 0.125) for Chr 1, 500 replicates: (A) 10K chip, (B) 100K chip, (C) 200K chip, 
(D) 500K chip. Red dotted line is at mean of distribution. 
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Figure 4.35: Comparison between True Conditional Kinship Coefficient and Esti­
mated Conditional Kinship Coefficient for replicate with mean Average Absolute 
Difference for individual pair 4 & 7 (theoretical kinship coefficient = 0.125) 500K 
chip, Chr 1. A locus has a black box when the estimated value and the true value 
are identical. For loci where the estimate is different than the true value, the 
estimated value is a blue dot and the true value is a red dot. 
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Figure 4.36: Distribution of Average Absolute Difference of the conditional kin­
ship coefficient estimation for individual pair 4 & 19 (theoretical kinship coef­
ficient = 0.03125) for Chr 1, 500 replicates: (A) 10K chip, (B) 100K chip, (C) 
200K chip, (D) 500K chip. Red dotted line is at mean of distribution. 
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Figure 4.37: Comparison between True Conditional Kinship Coefficient and Esti­
mated Conditional Kinship Coefficient for replicate with mean Average Absolute 
Difference for individual pair 4 & 19 (theoretical kinship coefficient = 0.03125) 
500K chip, Chr 1. A locus has a black box when the estimated value and the true 
value are identical. For loci where the estimate is different than the true value, 
the estimated value is a blue dot and the true value is a red dot. 
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Figure 4.38: Distribution of Average Absolute Difference of the conditional kin­
ship coefficient estimation for individual pair 19 h 21 (theoretical kinship coef­
ficient = 0.003906) for Chr 1, 500 replicates: (A) 10K chip, (B) 100K chip, (C) 
200K chip, (D) 500K chip. Red dotted line is at mean of distribution. 
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Figure 4.39: Comparison between True Conditional Kinship Coefficient and Esti­
mated Conditional Kinship Coefficient for replicate with mean Average Absolute 
Difference for individual pair 19 & 21 (theoretical kinship coefficient = 0.003906) 
500K chip, Chr 1. A locus has a black box when the estimated value and the true 
value are identical. For loci where the estimate is different than the true value, 
the estimated value is a blue dot and the true value is a red dot. 

146 



www.manaraa.com

We have demonstrated that our penalized optimization method of estimating 

conditional kinship coefficients is a good general estimator and is able to dis­

cover the complex patterns of IBD sharing for both large and small chromosomes 

and across the entire spectrum of genetic relatedness that our theoretical kinship 

coefficient estimator can confidently estimate. The results from the theoretical 

kinship estimation and conditional kinship coefficient estimation leads us to be­

lief that our estimates can be used in the traditional QTL mapping framework 

without lose of information or power to uncover linkage signals. 

4.3.3 Pedigree Construction 

We have demonstrated the ability to correctly estimate both the global and per 

locus genetic relatedness between individuals using only their genome wide SNP 

genotypes and no other information. Traditionally the only way to calculate these 

measures of relatedness was through the use of specified pedigrees. Therefore we 

hypothesized that we can perform inference in the opposite direction, given our 

estimates for the theoretical kinship coefficient we can infer the pedigrees con­

tained within the data. Our method combines our theoretical kinship coefficient 

estimation method with the standard algorithm to find connected components of 

a graph to cluster individuals into pedigrees. These constructed pedigrees can 

then be analyzed in the same manner as traditionally collected and annotated 

pedigrees because we can estimate all the needed coefficients. This would allow 

the data collector to not spend the large amount of time and money to determine 

all pedigree relationships among the individuals genotyped. 

We tested our hypothesis through simulation studies. We simulated geno­

types via gene dropping for two replicates of the pedigree structure used in the 
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theoretical and conditional kinship coefficient simulations (Figure 4.1) using the 

Illumina 550K SNP chip as the genotyping platform. We performed two different 

analyses: (1) everyone in both pedigrees had genotype data, and (2) individuals 

7-12 from both pedigrees were excluded from the analysis. For these two setups 

we used different kinship coefficient cutoffs to see how the constructed pedigrees 

compared to the true pedigrees. We analyzed the two datasets with cutoff values 

of 0.25 (data not shown), 0.20, 0.125, and 0.10. These cutoffs were chosen to 

see the affects of using the mean value versus the -2SD value of the distributions 

for individual pairs 3 & 4 and 4 & 7. The results from using the 0.25 cutoff 

(mean of the distribution for pair 3 & 4) were not good. The expected number 

of pedigrees is 2 for both data set 1 and 2, but the analysis returned 23 and 24 

pedigrees respectively. The next analysis was using a cutoff of 0.20 which is the 

-2SD value for individual pair 3 & 4. For data set 1 the correct configuration 

is two pedigrees each with 21 individuals, that is exactly what we found (Table 

4.27). Next we analyzed data set 2 with the 0.20 cutoff. The expected number 

of pedigrees formed from this set up is 6 per input pedigree for a total of 12, and 

again we correctly recover all pedigrees. Next we used a cutoff of 0.125 which 

is the mean value of the distribution for individual pair 4 & 7. The expected 

number of pedigrees for both data set 1 and 2 is two pedigrees. The analysis of 

data set 1 correctly constructed the two pedigrees, but the analysis of data set 2 

returned 7 pedigrees instead (Table 4.27). The last analysis used a cutoff of 0.10 

which is the -2SD value of the distribution for individual pair 4 & 7. For both 

the analysis of data set 1 and 2 the expected number of pedigrees is 2, and we 

correctly reconstruct the pedigrees. We believe these results clearly demonstrate 

the ability of our new method to correctly cluster individuals into pedigrees. The 
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Cutoff 
0.20 
0.20 

0.125 
0.125 

0.10 
0.10 

Data Set 
1 
2 

1 
2 

1 
2 

Expected 
2 
12 

2 
2 

2 
2 

Actual 
2 
12 

2 
7 

2 
2 

Formed Pedigrees 
[1-1 to 1-21],[2-1 to 2-21] 
[l-l,l-2,l-3,l-4],[l-5],[l-6], 
[1-13,1-16,1-19], [1-14,1-17,1-20], 
[l-15,l-18,l-21],[2-l,2-2,2-3,2-4] 
[2-5], [2-6], [2-13,2-16,2-19] 
[2-14,2-17,2-20],[2-15,2-18,2-21] 
[1-1 to 1-21],[2-1 to 2-21] 
[1-1,1-2,1-3,1-4,1-14,1-15, 
1-17,1-18,1-20,1-21],[1-6], 
[1-5,1-13,1-16,1-19],[2-1,2-2,2-3,2-4], 
[2-5,2-13,2-14,2-16,2-17,2-19,2-20], 
[2-15,2-18,2-21],[2-6] 
[1-1 to 1-21], [2-1 to 2-21] 
[1-1 to 1-21], [2-1 to 2-21] 

Table 4.27: Pedigree Construction Results from Simulated Pedigrees. Data Set 
1 refers to data set with everyone included, and Data Set 2 refers to the data 
set with individuals 7-12 from both pedigrees excluded. Individuals within [] 
were clustered into a pedigree. The 1- means the individual was from the first 
simulated pedigree and 2- means the individual was from the second simulated 
pedigree. 

next test is to see how this and the methods tested above perform in real data. 

4.3.4 Analysis of Southwest Foundation Data 

We have demonstrated that our methods work well on simulated data and now 

will test the performance on the real data set from the Southwest Foundation 

described in the Materials and Methods section. The analysis undertaken was to 

use our pedigree construction algorithm, estimate the theoretical and conditional 

kinship coefficients in those pedigrees, and then perform QTL mapping using our 

data and compare the results to the known QTL in the data set. Based upon 

the simulation results we constructed pedigrees with three different cutoffs: 0.20, 

0.10 and 0.0625. Using the cutoff of 0.20 we constructed 122 pedigrees of 2 or 
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more individuals and included 740 of 858 individuals with genotype data, the 

remaining genotyped individuals forming singleton pedigrees. With the cutoff of 

0.10 we constructed 31 pedigrees of 2 or more individuals and included 793 of the 

858 typed individuals, and this included a pedigree with 568 individuals. Using a 

cutoff of 0.0625 we constructed a single pedigree that included all 858 individuals. 

The remainder of the discussion of our analysis will focus on the analysis using a 

cutoff of 0.20. 

The first analysis we performed was to investigate how our theoretical kinship 

coefficient estimator performed in this real data set. We found all pairs of indi­

viduals with theoretical kinship coefficients of 0.25, 0.125, 0.0625 and 0.03125 and 

determined the distribution of our estimated coefficients for these pairs. There 

were 1,218 individual pairs with theoretical kinship coefficients of 0.25 and the 

distribution of our estimates for those pairs are seen in Figure 4.40A. The mean of 

the distribution was 0.2533 with a standard deviation of 0.03. There were 1,521 

individual pairs with theoretical kinship coefficient of 0.125 and the distribution 

of our estimates had a mean of 0.1291 and standard deviation of 0.021 and is seen 

in Figure 4.40B. The analysis of pairs with theoretical kinship coefficient of 0.0625 

was based on 1,950 pairs and the distribution of estimates had mean 0.0667 and 

standard deviation of 0.021 and is in Figure 4.40C. The final theoretical kinship 

coefficient pairs we looked at have a coefficient of 0.03125 and our analysis of the 

1,454 pairs had a mean of 0.0349 with a standard deviation of 0.017 as seen in 

Figure 4.40D. All these analyses show that our method is performing well in real 

data and we believe revealing relationship misspecifications in the outliers of the 

distributions. 

With these results showing that our theoretical kinship estimator is working 
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well, we ran the pedigree construction algorithm on the data with a cutoff of 

0.20. As stated above, this resulted in the formation of 122 pedigrees with 2 or 

more individuals for a total of 740 individuals being included in these pedigrees. 

Just as a reminder, the data as specified by the Southwest Foundation had 1942 

individuals, with 107 singletons and the other 1,835 individuals in 46 pedigrees of 

2 or more individuals. Of the 1942 individuals only 858 individuals had genotype 

information. So with a cutoff that is very good at recognizing sibling/parent-

offspring relationships we were able to assign 86.25% of the individuals with 

genotypes to pedigrees. Figure 4.41 is an example of how our pedigree construc­

tion compares to the specified pedigrees. This figure shows the structures of two 

pedigrees as specified by the Southwest Foundation. Individuals la and 2a were 

clustered with Pedigree B because individual la has estimated kinship coefficients 

of 0.329, 0.201, 0.215 and 0.326 with individuals lb, 2b, 3b and 4b respectively. 

Whereas individual la had estimated coefficients of 0.193, 0.190 and 0.175 with 

individuals 3a, 4a and 5a respectively. We believe this example shows that our 

method performs well because individuals lb, 2b and 4b would not have been 

included in their specified pedigree if it was not for including individual la in the 

analysis. 
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Figure 4.40: Theoretical Kinship Coefficient Estimation for Southwest Founda­
tion data: (A) Pairs designated with 0.25 (B) Pairs with 0.125 (C) Pairs with 
0.0625 (D) Pairs with 0.03125 Theoretical Kinship Coefficient based upon speci­
fied pedigree structures 
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Figure 4.41: Example of our pedigree construction using 0.20 cutoff versus speci­
fied pedigree structure for Southwest Foundation data. Only colored individuals 
had genotype data and were analyzed. (A) & (B) shows pedigree structures sup­
plied by Southwest Foundation. Individuals of the same color were assigned to 
the same pedigree by our algorithm. 
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With confidence in our pedigree construction and theoretical kinship esti­

mation methods we are currently performing QTL analysis in our constructed 

pedigrees with our estimated coefficients. 

4.4 Discussion 

We have proposed three new methods utilizing genome-wide SNP genotypes to es­

timate the level of pairwise genetic relatedness both globally and locally between 

individuals with no prior knowledge of their relationship. The first method we 

developed was a method-of-moments technique to utilize SNP genotypes to es­

timate the theoretical kinship coefficient between pairs of individuals. We have 

shown that our method is an unbiased and good estimator of the theoretical kin­

ship coefficient for very distantly related individuals. Our results also illustrate 

that our method increases its accuracy and reduces its variance with increasing 

numbers of markers included in the analysis. This method can be used to discover 

cryptic relationships in study samples or test specified relationships for accuracy. 

Building upon our theoretical kinship coefficient estimator we developed a 

penalized optimization algorithm to estimate the conditional kinship coefficient 

for every SNP on a genome-wide basis for pairs of individuals. We found a sin­

gle penalty value that works for all levels of relatedness and works well on both 

large and small chromosomes. The results show that our method is capable of 

uncovering complex patterns of IBD sharing between individuals, and does so 

with a small degree of error. The results from the simulation studies give us con­

fidence that the estimates that our method produces can be used in conjunction 

with our theoretical kinship coefficient estimates in QTL analysis using variance 
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components with little or no lose of power. 

Finally we showed that we have created a self-contained analysis paradigm: by 

combining our theoretical kinship estimator with an algorithm to find connected 

components of a graph we construct pedigrees from genome-wide SNP data; we 

can also estimate the conditional kinship among pairs within the pedigrees unites. 

These algorithms together supply all the material (pedigree structures, theoret­

ical, and conditional kinship coefficients) necessary for standard gene mapping 

algorithms. The results of our simulation investigations reveal that a soft thresh­

old cutoff should be applied to pedigree construction, and when it is applied the 

algorithm performs well at correctly identifying individuals that belong together. 

In addition, our analysis of the Southwest Foundation data illustrates the ability 

of our procedures to discover cryptic relationships in data. Taken together we be­

lieve that these three new analysis techniques open up new possibilities for study 

design. The methods allow researchers to use the power of pedigree analysis 

without the cost and time of correctly collecting and annotating pedigrees. 
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Chapter 5 

Outlook 

In the span of my graduate career I've gone from analyzing a 9 marker microsatel-

lite map on chromosome 16 in approximately 750 individuals, to analyzing the 

Southwest Foundation data set in Chapter 4 that was composed of 858 individ­

uals that had genotype data at 547,458 autosomal SNPs from across the entire 

genome. That is an astonishing expansion in scale in a short period of time and 

gives an example of the tremendous technological advancements that are driving 

the field of human genetics. We hope this dissertation has given the reader some 

of the challenges posed by this huge expansion in the scale of data generation 

as well as ways to overcome those challenges and use the data in novel ways to 

help map the genetic components involved in the complex human diseases. The 

research in this dissertation has revealed further avenues of investigation that can 

build on its success. 

The GGSD data management application discussed in Chapter 2 has many 

areas for further development and enhancement. An important area of develop­

ment is the addition of the capability to store and search analysis results. This is 
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a large undertaking considering the vast number of different analysis techniques, 

especially since that list is continually growing as new methods are developed 

to analyze these large datasets. But such a capability is necessary and if the re­

sults are searchable an extremely powerful tool. Additionally, the analysis of copy 

number variation (CNV) is becoming a very interesting and widely-used analysis. 

The database schema needs to be able to handle this type of data and potentially 

develop new tools to search and analyze this important type of variation. Other 

small enhancements include supporting the production of the binary formatted 

files for the PLINK software (Purcell et ai, 2007). As the human genetics re­

search community evolves the types of data generated and analyses performed, 

GGSD will grow and evolve with it. 

The algorithms for the estimation of identity-by-descent (IBD) sharing be­

tween general individuals developed in Chapter 4 has many further applications. 

Many genetic analysis methods are based upon utilizing information on IBD 

sharing, including the NPL analysis methods discussed in Chapter 3. The esti­

mation techniques employed by the program Simwalk2 to estimate IBD sharing 

can take a long time to converge. An investigation into whether the algorithms 

developed in Chapter 4 are good enough and allow for a substantial savings in 

computational efficiency to replace Simwalk2's method of IBD estimation should 

be undertaken. Further development of the algorithms is possible as well. All 

three algorithms of Chapter 4 lend themselves to straight forward parallelization 

and therefore a tremendous increase in its computational efficiency. For example, 

the estimation of the conditional kinship coefficients along each chromosome is 

independent of all other chromosomes allowing the per chromosome calculation to 

be split among available processors. These are but two of the possible extensions 
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to these powerful algorithms. 

With the continued development of new ways to assay genetic variation and 

the cost of sequencing plummeting due to new massively parallel technologies, 

there will be no shortage of data or new possibilities for the development of 

analysis methods any time soon. This makes the computational genetics field an 

exciting field with a strong future. 

158 



www.manaraa.com

Bibliography 

Abecasis, G. et al. (2002). Merlin-rapid analysis of dense genetic maps using 
sparse gene flow trees. Nat Genet, 30, 97-101. 

Altshuler, D. and Daly, M. (2007). Guilt beyond a reasonable doubt. Nature 
Genet, 39(7), 813-815. 

Bacanu, S. et al. (2000). The power of genomic control. Am J Hum Genet, 66, 
1933-1944. 

Barrett, J. et al. (2005). Haploview: analysis and visualization of Id and haplotype 
maps. Bioinformatics, 21(2), 263-5. 

Boehnke, M. and Cox, N. (1997). Accurate inference of relationships in sib-pair 
linkage studies. Am J Hum Genet, 61 , 423-429. 

Cheung, K. et al. (1996). Phenodb: an integrated client/server database for 
linkage and population genetics. Comput Biomed Res, 29, 327-337. 

Daly, M. et al. (2001). High-resolution haplotype structure in the human genome. 
Nat Genet, 29(2), 229-32. 

Day, A. G. (2007). The generic genetic studies database: A data management 
system for large scale genetic studies. Presented at the annual meeting of 
The American Society of Human Genetics, October 23-27. Available from 
http://www.ashg.org/cgi-bin/ashg07s/ashg07. 

Devlin, B. and Roeder, K. (1999). Genomic control for association studies. 
Biometics, 55, 997-1004. 

Ehm, M. and Wagner, M. (1998). A test statistic to detect error in sib-pair 
relationships. Am J Hum Genet, 62, 181-188. 

Epstein, M. et al. (2000). Improved inference of relationship for pairs of individ­
uals. Am J Hum Genet, 67, 1219-1231. 

159 

http://www.ashg.org/cgi-bin/ashg07s/ashg07


www.manaraa.com

Fiddy, A. et al. (2005). An integrated system for genetic analysis. BMC Bioin-
formatics, 7, 210. 

Gillanders, E. et al. (2004). Genelink: a database to facilitate genetic studies of 
complex traits. BMC Genomics, 5, 81. 

Kong, A. and Cox, N. (1997). Allele-sharing models: Lod scores and accurate 
linkage tests. Am J Hum Genet, 61, 1179-1188. 

Kruglyak, L. et al. (1996). Parametric and nonparametric linkage analysis: a 
unified multipoint approach. Am J Hum Genet, 58, 1347-1363. 

Lange, E. and Lange, K. (2004). Powerful allele sharing statistics for nonpara­
metric linkage analysis. Hum Hered, 57, 49-58. 

Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis. 
Springer-Verlag, New York, 2nd edition. 

Lange, K. et al. (2001). Mendel version 4.0: A complete package for the exact 
genetic analysis of discrete traits in pedigree and population data sets. Am J 
Hum Genet, 69(Suppl), A1886. 

Lewis, S. et al. (2002). Apollo: a sequence annotation editor. Genome Biol, 3, 
RESEARCH0082. 

Li, J.-L. et al. (2001). Toward high-throughput genotyping: dynamic and auto­
matic software for manipulated large-scale genotype data using fluorescently 
labeled dinucleotide markers. Genome Res, 11, 1304-1314. 

Li, J.-L. et al. (2005). Phd: a web database application for phenotype data 
management. Bioinformatics, 21(16), 3443-3444. 

Lynch, M. and Ritland, K. (1999). Estimation of pairwise relatedness with molec­
ular markers. Genetics, 152, 1753-1766. 

Makinen, V. et al. (2005). High-throughput pedigree drawing. Eur J Hum Genet, 
13, 987-989. 

Matsuzaki, H. et al. (2004). Genotyping over 100,000 snps on a pair of oligonu­
cleotide arrays. Nat Methods, 1, 109-111. 

McCarthy, M. I. et al. (2008). Genome-wide association studies for complex 
traits: consensus, uncertainty and challenges. Nat Rev Genet, 9(5), 356-369. 

McPeek, M. and Sun, L. (2000). Statistical tests for detection of misspecified 
relationships by use of genome-screen data. Am J Hum Genet, 66, 1076-1094. 

160 



www.manaraa.com

Millar, K. (1987). Some Eclectic Matrix Theory. Robert E Krieger Publishing, 
Malabar, FL. 

Milligan, B. (2003). Maximum-likelihood estimation of relatedness. Genetics, 
163, 1153-1167. 

Mousseau, T. et al. (1998). A novel method for estimating heritability using 
molecular markers. Heredity, 80, 218-224. 

Mukhopadhyay, N. et al. (2005). Mega2: data-handling for facilitating genetic 
linkage and association analyses. Bioinformatics, 21, 2556-7. 

Pajukanta, P. et al. (2003). Combined analysis of genome scans of dutch and 
finnish families reveals a susceptibility locus for high-density lipoprotein choles­
terol on chromosome 16q. Am J Hum Genet, 72, 903-917. 

Patil, N. et al. (2001). Blocks of limited haplotype diversity revealed by high-
resolution scanning of human chromosome 21. Science, 294, 1719-23. 

Pritchard, J. and Rosenberg, N. (1999). Use of unlinked genetic markers to detect 
population stratification in association studies. Am J Hum Genet, 65, 220-228. 

Purcell, S. et al. (2007). Plink: a toolset for whole-genome association and 
population-based linkage analysis. Am J Hum Genet, 81(3), 559-75. 

Queller, D. and Goodnight, K. (1989). Estimating relatedness using genetic 
markers. Evolution, 43, 258-275. 

Reich, D. and Goldstein, D. (2001). Detecting association in a case-control study 
while correcting for population stratification. Genet Epidemiol, 20, 4-16. 

Risch, N. and Merikangas, K. (1996). The future of genetic studies of complex 
human diseases. Science, 273(5281), 1516-1517. 

Satten, G. et al. (2001). Accounting for unmeasured population substructure in 
case-control studies of genetic association using a novel latent-class model. Am 
J Hum Genet, 68, 466-477. 

Seuchter, S. and Skolnich, M. (1988). Hgdbms: A human genetics database 
management system. Comput Biomed Res, 21, 478-487. 

Slager, S. and Schaid, D. (2001). Evaluation of candidate genes in case-control 
studies: A statistical method to account for related subjects. Am J Hum Genet, 
68, 1457-1462. 

161 



www.manaraa.com

Sobel, E. et al. (2001). Multipoint estimation of indentity-by-descent probabilities 
at arbitrary positions among marker loci on general pedigrees. Hum Hered, 52, 
121-131. 

Sobel, E. and Lange, K. (1996). Descent graphs in pedigree analysis: applications 
to haplotyping, location scores, and marker-sharing statistics. Am J Hum 
Genet, 58, 1323-1337. 

Song, K. et al. (2004). Efficient simulation of p values for linkage analysis. Genet 
Epidemiol, 24, 1-9. 

Stein, L. et al. (2002). The generic genome browser: a building block for a generic 
model organism database. Genome Res, 12, 1599-610. 

Sun, L. et al. (2002). Enhanced pedigree error detection. Hum Hered, 54, 99-110. 

The International HapMap Consortium et al. (2003). The international hapmap 
project. Nature, 426, 789-96. 

The International Human Genome Sequencing Consortium et al. (2001). Initial 
sequencing and analysis of the human genome. Nature, 409, 860-921. 

Thompson, E. (1974). Gene identities and multiple relationships. Biometrics, 
30, 667-680. 

Thompson, E. (1975). The estimation of pairwise relationships. Ann Hum Genet, 
39, 173-188. 

Venter, J. et al. (2001). The sequence of the human genome. Science, 291, 
1304-51. 

Voight, B. and Pritchard, J. (2005). Confounding from cryptic relatedness in 
case-control association studies. PLoS Genet, 1, e32. 

Wang, J. (2002). An estimator for pairwise relatedness using molecular markers. 
Genetics, 160, 1203-1215. 

Whittemore, A. and Halpern, J. (1994a). A class of tests for linkage using affected 
pedigree members. Biometrics, 50, 118-127. 

Whittemore, A. and Halpern, J. (1994b). Probability of gene identity by descent: 
computation and applications. Biometrics, 50, 109-117. 

Wigginton, J. and Abecasis, G. (2005). Pedstats: descriptive statistics, graphics, 
and quality assessment for gene mapping data. Bioinformatics, 21, 3445-3447. 

162 



www.manaraa.com

Wigginton, J. and Abecasis, G. (2006). Evaluation of the replicate pool method: 
quick estimation of genome-wide linkage peak p-values. Genet Epidemiol, 30, 
320-332. 

Wigginton, J. et al. (2005). A note on exact tests of hardy-weinberg equilibrium. 
Am J Hum Genet, 76, 887-893. 

Yu, J. et al. (2006). A unified mixed-model method for association mapping that 
accounts for multiple levels of relatedness. Nat Genet, 38, 203-8. 

Zhao, L.-J. et al. (2005). Snpp: automating large-scle snp genotype data man­
agement. Bioinformatics, 21(2), 266-268. 

163 


